-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathekf.py
389 lines (313 loc) · 15.6 KB
/
ekf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Imu
from nav_msgs.msg import Odometry
from std_msgs.msg import Float64MultiArray
import numpy as np
from scipy.spatial.transform import Rotation as R
from multi_turtlebot_sim.msg import RobotState, RobotCovariance
from message_filters import Subscriber, ApproximateTimeSynchronizer
def skew_symmetric(v):
return np.array([
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]
])
def construct_F(CbnPlus, accel):
F = np.zeros((15, 15))
# Populate F matrix based on the given instructions
F[3:6, 0:3] = skew_symmetric(-CbnPlus @ accel)
F[0:3, 12:15] = CbnPlus
F[3:6, 9:12] = CbnPlus
F[6:9, 3:6] = np.eye(3)
return F
def calc_Q(dt, CbnPlus, accel):
gg = 9.8
# Convert biases and noise to SI units
sig_gyro_inRun = 0.2 * np.pi / 180 / 3600 # rad/s
sig_ARW = 0.3 * np.pi / 180 * np.sqrt(3600) / 3600 # rad
sig_accel_inRun = 3e-3 * gg # m/s^2
sig_VRW = 0.023 * np.sqrt(3600) / 3600 # m/s
# Calculate power spectral densities
Srg = (sig_ARW ** 2) * dt
Sra = (sig_VRW ** 2) * dt
Sbad = (sig_accel_inRun ** 2) / dt
Sbgd = (sig_gyro_inRun ** 2) / dt
# Initialize sub-matrices
'''F21 = -skew_symmetric(np.dot(CbnPlus, accel))
# Identity matrix for transformation in XYZ frame
T_rn_p = np.eye(3)
Q11 = (Srg * dt + (1.0 / 3.0) * Sbgd * (dt ** 3)) * np.eye(3)
Q21 = ((1.0 / 2.0) * Srg * (dt ** 2) + (1.0 / 4.0) * Sbgd * (dt ** 4)) * F21
Q12 = Q21.T
Q31 = ((1.0 / 3.0) * Srg * (dt ** 3) + (1.0 / 5.0) * Sbgd * (dt ** 5)) * np.dot(T_rn_p, F21)
Q13 = Q31.T
Q14 = np.zeros((3, 3))
Q15 = (1.0 / 2.0) * Sbgd * (dt ** 2) * CbnPlus
Q22 = (Sra * dt + (1.0 / 3.0) * Sbad * (dt ** 3)) * np.eye(3) + ((1.0 / 3.0) * Srg * (dt ** 3) + (1.0 / 5.0) * Sbgd * (dt ** 5)) * np.dot(F21, F21.T)
Q32 = ((1.0 / 2.0) * Sra * (dt ** 2) + (1.0 / 4.0) * Sbad * (dt ** 4)) * T_rn_p + ((1.0 / 4.0) * Srg * (dt ** 4) + (1.0 / 6.0) * Sbgd * (dt ** 6)) * np.dot(T_rn_p, np.dot(F21, F21.T))
Q23 = Q32.T
Q24 = (1.0 / 2.0) * Sbad * (dt ** 2) * CbnPlus
Q25 = (1.0 / 3.0) * Sbgd * (dt ** 3) * np.dot(F21, CbnPlus)
Q33 = ((1.0 / 3.0) * Sra * (dt ** 3) + (1.0 / 5.0) * Sbad * (dt ** 5)) * np.dot(T_rn_p, T_rn_p) + ((1.0 / 5.0) * Srg * (dt ** 5) + (1.0 / 7.0) * Sbgd * (dt ** 7)) * np.dot(T_rn_p, np.dot(F21, np.dot(F21.T, T_rn_p)))
Q34 = (1.0 / 3.0) * Sbad * (dt ** 3) * np.dot(T_rn_p, CbnPlus)
Q35 = (1.0 / 4.0) * Sbgd * (dt ** 4) * np.dot(T_rn_p, np.dot(F21, CbnPlus))
Q41 = np.zeros((3, 3))
Q42 = (1.0 / 2.0) * Sbad * (dt ** 2) * CbnPlus.T
Q43 = Q34.T
Q44 = Sbad * dt * np.eye(3)
Q45 = np.zeros((3, 3))
Q51 = (1.0 / 2.0) * Sbgd * (dt ** 2) * CbnPlus.T
Q52 = (1.0 / 3.0) * Sbgd * (dt ** 3) * np.dot(F21.T, CbnPlus.T)
Q53 = Q35.T
Q54 = np.zeros((3, 3))
Q55 = Sbgd * dt * np.eye(3)
Q11 = np.random.normal(0,0.001)
# Assemble the full Q matrix
Q_block = np.block([
[Q11, Q12, Q13, Q14, Q15],
[Q21, Q22, Q23, Q24, Q25],
[Q31, Q32, Q33, Q34, Q35],
[Q41, Q42, Q43, Q44, Q45],
[Q51, Q52, Q53, Q54, Q55]
])
Q = np.block([
[Q_block, np.zeros((15, 15)), np.zeros((15, 15))],
[np.zeros((15, 15)), Q_block, np.zeros((15, 15))],
[np.zeros((15, 15)), np.zeros((15, 15)), Q_block]
])'''
# Generate random Gaussian values for the diagonal elements
Q_diag = np.zeros(15)
Q_diag[0:3] = np.random.normal(0, Srg, 3) # Attitude noise (due to gyro noise)
Q_diag[3:6] = np.random.normal(0, Sra, 3) # Velocity noise (due to acceleration noise)
Q_diag[6:9] = np.random.normal(0, 0.0001, 3) # Position noise (due to integrated velocity)
Q_diag[9:12] = np.random.normal(0, Sbad, 3) # Accel bias noise
Q_diag[12:15] = np.random.normal(0, Sbgd, 3) # Gyro bias noise
# Build the diagonal Q matrix
Q = np.diag(Q_diag)
return Q
class EKFNode(Node):
def __init__(self):
super().__init__('ekf_node')
self.initialize_filter()
self.create_subscriptions()
self.create_publishers()
self.timer = self.create_timer(0.1, self.timer_callback)
def initialize_filter(self):
# State vector: [attitude, velocity, position, acc bias, gyro bias] for each robot
self.nominal_state = np.zeros(45) # 15 states per robot, 3 robots
self.error_state = np.zeros(45) # 15 error states per robot, 3 robots
self.covariance = np.eye(45)
# Define the variances for each state component
attitude_variance = 0.1
position_variance = 0.2
velocity_variance = 0.01
bias_variance = 0.0001
# Loop through each robot and update the corresponding covariance block
for i in range(3):
start_idx = i * 15
self.covariance[start_idx:start_idx+3, start_idx:start_idx+3] = np.eye(3) * attitude_variance
self.covariance[start_idx+3:start_idx+6, start_idx+3:start_idx+6] = np.eye(3) * position_variance
self.covariance[start_idx+6:start_idx+9, start_idx+6:start_idx+9] = np.eye(3) * velocity_variance
self.covariance[start_idx+9:start_idx+15, start_idx+9:start_idx+15] = np.eye(6) * bias_variance
self.initialized = [False, False, False]
self.f_ib_b = [np.zeros(3), np.zeros(3), np.zeros(3)]
self.gyro_world = [np.zeros(3), np.zeros(3), np.zeros(3)]
def create_subscriptions(self):
self.imu_sub_1 = Subscriber(self, Imu, '/robot1/imu')
self.imu_sub_2 = Subscriber(self, Imu, '/robot2/imu')
self.imu_sub_3 = Subscriber(self, Imu, '/robot3/imu')
self.sync = ApproximateTimeSynchronizer(
[self.imu_sub_1, self.imu_sub_2, self.imu_sub_3],
queue_size=10,
slop=0.1 # 100ms tolerance for synchronization
)
self.sync.registerCallback(self.imu_callback)
self.create_subscription(Float64MultiArray, '/robot1_2/uwb', self.uwb_callback_1_2, 10)
self.create_subscription(Float64MultiArray, '/robot1_3/uwb', self.uwb_callback_1_3, 10)
self.create_subscription(Float64MultiArray, '/robot2_3/uwb', self.uwb_callback_2_3, 10)
self.create_subscription(Odometry, '/robot1/odom', self.odom_callback_1, 10)
self.create_subscription(Odometry, '/robot2/odom', self.odom_callback_2, 10)
self.create_subscription(Odometry, '/robot3/odom', self.odom_callback_3, 10)
def create_publishers(self):
self.state_pub_1 = self.create_publisher(RobotState, '/robot1/state', 10)
self.covariance_pub_1 = self.create_publisher(RobotCovariance, '/robot1/covariance', 10)
self.state_pub_2 = self.create_publisher(RobotState, '/robot2/state', 10)
self.covariance_pub_2 = self.create_publisher(RobotCovariance, '/robot2/covariance', 10)
self.state_pub_3 = self.create_publisher(RobotState, '/robot3/state', 10)
self.covariance_pub_3 = self.create_publisher(RobotCovariance, '/robot3/covariance', 10)
def imu_callback(self, imu_msg_1, imu_msg_2, imu_msg_3):
# Process synchronized IMU messages from all three robots
self.process_imu(imu_msg_1, 0)
self.process_imu(imu_msg_2, 1)
self.process_imu(imu_msg_3, 2)
def predict(self, dt):
g = np.array([0, 0, -9.8]) # gravity vector
# Process the IMU data for each robot simultaneously
roll1, pitch1, yaw1 = self.nominal_state[0], self.nominal_state[1], self.nominal_state[2]
roll2, pitch2, yaw2 = self.nominal_state[15], self.nominal_state[16], self.nominal_state[17]
roll3, pitch3, yaw3 = self.nominal_state[30], self.nominal_state[31], self.nominal_state[32]
Cbn1 = R.from_euler('xyz', [roll1, pitch1, yaw1]).as_matrix()
Cbn2 = R.from_euler('xyz', [roll2, pitch2, yaw2]).as_matrix()
Cbn3 = R.from_euler('xyz', [roll3, pitch3, yaw3]).as_matrix()
# Get the gyro and accel data for each robot
gyro1 = self.gyro_world[0] - self.nominal_state[12:15]
gyro2 = self.gyro_world[1] - self.nominal_state[27:30]
gyro3 = self.gyro_world[2] - self.nominal_state[42:45]
#print(self.f_ib_b)
accel1 = self.f_ib_b[0] - self.nominal_state[9:12]
accel2 = self.f_ib_b[1] - self.nominal_state[24:27]
accel3 = self.f_ib_b[2] - self.nominal_state[39:42]
# Update CbnPlus for each robot
CbnPlus1 = Cbn1 @ (np.eye(3) + skew_symmetric(gyro1) * dt)
CbnPlus2 = Cbn2 @ (np.eye(3) + skew_symmetric(gyro2) * dt)
CbnPlus3 = Cbn3 @ (np.eye(3) + skew_symmetric(gyro3) * dt)
# Velocity and Position Prediction for each robot
for i, (CbnPlus, accel, idx) in enumerate(zip([CbnPlus1, CbnPlus2, CbnPlus3],
[accel1, accel2, accel3],
[0, 15, 30])):
# Velocity prediction
v_minus = self.nominal_state[idx+3:idx+6]
v_plus = v_minus + ((CbnPlus @ accel) + g) * dt
self.nominal_state[idx+3:idx+6] = v_plus
# Position prediction
r_minus = self.nominal_state[idx+6:idx+9]
r_plus = r_minus + (dt / 2) * (v_minus + v_plus)
self.nominal_state[idx+6:idx+9] = r_plus
# Construct F matrices for each robot
F1_block = construct_F(CbnPlus1, accel1)
F2_block = construct_F(CbnPlus2, accel2)
F3_block = construct_F(CbnPlus3, accel3)
# Calculate Q matrices for each robot
Q1 = calc_Q(dt, CbnPlus1, accel1)
Q2 = calc_Q(dt, CbnPlus2, accel2)
Q3 = calc_Q(dt, CbnPlus3, accel3)
# Extend Q to 45x45 block diagonal matrix for 3 robots
Q = np.block([
[Q1, np.zeros((15, 15)), np.zeros((15, 15))],
[np.zeros((15, 15)), Q2, np.zeros((15, 15))],
[np.zeros((15, 15)), np.zeros((15, 15)), Q3]
])
# Build the full F1 matrix
F1_block = np.eye(15) + F1_block * dt
F2_block = np.eye(15) + F2_block * dt
F3_block = np.eye(15) + F3_block * dt
F1 = np.block([
[F1_block, np.zeros((15, 15)), np.zeros((15, 15))],
[np.zeros((15, 15)), F2_block, np.zeros((15, 15))],
[np.zeros((15, 15)), np.zeros((15, 15)), F3_block]
])
# Update error state and covariance
self.error_state = F1 @ self.error_state
self.covariance = F1 @ self.covariance @ F1.T + Q
def update(self, z, R, sensor_type, robot_idx1, robot_idx2=None, zero_velocity = False):
if sensor_type == 'uwb':
idx1 = robot_idx1 * 15
idx2 = robot_idx2 * 15
H = np.zeros((1, 45))
# Predicted measurement using current state estimate
px1, py1, pz1 = self.nominal_state[idx1+6], self.nominal_state[idx1+7], self.nominal_state[idx1+8]
px2, py2, pz2 = self.nominal_state[idx2+6], self.nominal_state[idx2+7], self.nominal_state[idx2+8]
predicted_distance = np.sqrt((px1 - px2)**2 + (py1 - py2)**2 + (pz1 - pz2)**2)
# Partial derivatives for the measurement model
H[0, idx1+6] = (px1 - px2) / predicted_distance
H[0, idx1+7] = (py1 - py2) / predicted_distance
H[0, idx1+8] = (pz1 - pz2) / predicted_distance
H[0, idx2+6] = (px2 - px1) / predicted_distance
H[0, idx2+7] = (py2 - py1) / predicted_distance
H[0, idx2+8] = (pz2 - pz1) / predicted_distance
# Measurement residual
y = z - H @ self.error_state
elif sensor_type == 'odom':
idx = robot_idx1 * 15
H = np.zeros((3, 45))
H[0, idx+3] = -1 # vx
H[1, idx+4] = -1 # vy
H[2, idx+5] = -1 # vz
# Measurement residual for velocity
y = z - H @ self.error_state # Only compare velocity
# Zero Velocity Update (ZVU)
'''elif zero_velocity:
idx = robot_idx1 * 15
H = np.zeros((6, 45))
H[0:3, idx+3:idx+6] = -np.eye(3) # H[0:3, 3:6]
H[3:6, idx+12:idx+15] = -np.eye(3) # H[3:6, 12:15]
# Measurement residual for zero velocity
y = -H @ self.nominal_state[idx+3:idx+9] # Assume measurement is zero
# Adjust R to match the ZVU size
R = np.eye(6) * 0.01 '''
# Measurement covariance
S = H @ self.covariance @ H.T + R
#print(self.covariance)
# Ensure S is positive definite before inverting
#if np.all(np.linalg.eigvals(S) > 0):
K = self.covariance @ H.T @ np.linalg.inv(S)
#print(K)
# Update the error state and covariance matrix
self.error_state += K @ y
#print(delta_error_state)
I = np.eye(45)
I_KH = I - K @ H
self.covariance = (I_KH @ self.covariance @ np.transpose(I_KH)) + K @ R @ np.transpose(K)
#else:
#self.get_logger().warn('Measurement covariance matrix is not positive definite. Skipping update.')
# return
# Correct the nominal state with the error state
self.nominal_state += self.error_state
# Reset the error state
self.error_state = np.zeros(45)
def process_imu(self, msg, robot_index):
imu_accel = np.array([msg.linear_acceleration.x, msg.linear_acceleration.y, msg.linear_acceleration.z])
imu_gyro = np.array([msg.angular_velocity.x, msg.angular_velocity.y, msg.angular_velocity.z])
imu_accel[2] = 9.8 + np.random.normal(0, 0.01)
#print(imu_accel)
self.f_ib_b[robot_index] = imu_accel
self.gyro_world[robot_index] = imu_gyro
def uwb_callback_1_2(self, msg):
self.update(msg.data[0], np.array([[0.04]]), 'uwb', 0, 1)
def uwb_callback_1_3(self, msg):
self.update(msg.data[0], np.array([[0.04]]), 'uwb', 0, 2)
def uwb_callback_2_3(self, msg):
self.update(msg.data[0], np.array([[0.04]]), 'uwb', 1, 2)
def odom_callback_1(self, msg):
self.process_odom(msg, 0)
def odom_callback_2(self, msg):
self.process_odom(msg, 1)
def odom_callback_3(self, msg):
self.process_odom(msg, 2)
def process_odom(self, msg, robot_index):
if not self.initialized[robot_index]:
self.initialized[robot_index] = True
odom_velocity = np.array([msg.twist.twist.linear.x, msg.twist.twist.linear.y, msg.twist.twist.linear.z])
R_mat = np.diag([0.01] * 3) # Only 3x3 matrix for velocity noise
self.update(odom_velocity, R_mat, 'odom', robot_index)
def timer_callback(self):
dt = 0.02 # Time step
self.predict(dt)
self.publish_state_and_covariance()
def publish_state_and_covariance(self):
robot_state_msgs = []
robot_covariance_msgs = []
for i in range(3):
idx = i * 15
state_msg = RobotState()
state_msg.state = self.nominal_state[idx:idx+15].tolist()
covariance_msg = RobotCovariance()
covariance_msg.covariance = self.covariance[idx:idx+15, idx:idx+15].flatten().tolist()
robot_state_msgs.append(state_msg)
robot_covariance_msgs.append(covariance_msg)
self.state_pub_1.publish(robot_state_msgs[0])
self.covariance_pub_1.publish(robot_covariance_msgs[0])
self.state_pub_2.publish(robot_state_msgs[1])
self.covariance_pub_2.publish(robot_covariance_msgs[1])
self.state_pub_3.publish(robot_state_msgs[2])
self.covariance_pub_3.publish(robot_covariance_msgs[2])
def main(args=None):
rclpy.init(args=args)
node = EKFNode()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()