The AAAI2025 accepted this paper! We will release the code in the next few days.
Note: Unlike the experiments reported in the paper, we simplified the classification header and re-conducted the experiments, resulting in more prominent results with fewer parameters. The new results are as follows:
Model Name | Group |
Equivariance | CIFAR-100 Acc. | #Param. | CIFAR-10 Acc. | #Param. |
---|---|---|---|---|---|---|
c2_sre_n | SRE | 76.95 | 325748 | - | 314138 | |
c2_rre_n | RRE | 77.84 | 345140 | - | 333530 | |
c4_sre_n | SRE | 80.79 | 625012 | - | - | |
c4_rre_n | RRE | 82.48 | 663796 | - | - | |
c6_sre_n | SRE | 81.36 | 924276 | - | - | |
c6_rre_n | RRE | 83.20 | 982452 | - | - | |
c8_sre_n | SRE | 82.52 | 1223540 | - | - | |
c8_rre_n | RRE | 83.63 | 1301108 | - | - |
Model Name | Group |
CIFAR-100 Acc. | #Param. | CIFAR-10 Acc. | #Param. |
---|---|---|---|---|---|
c4_rre_n | 82.48 | 663796 | - | - | |
c4_rre_s | 84.47 | 2524548 | - | - | |
c4_rre_m | 85.35 | 8061316 | - | - |
You can train the model using the following command:
python classification/train.py -model [Model Name] -dataset [Dataset] -batch_size 128
[Model Name]: c2_sre_n, c2_rre_n, c4_sre_n, c4_rre_n, c4_rre_s, c4_rre_m, c6_sre_n, c6_rre_n, c8_sre_n, c8_rre_n
[Dataset]: cifar10, cifar100
Example command:
cd classification
python train.py -model c4_rre_n -dataset cifar100 -batch_size 128