Skip to content

wuer5/rrenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 

Repository files navigation

Relaxed Rotational Equivariance via $G$-Biases in Vision

The AAAI2025 accepted this paper! We will release the code in the next few days.

Note: Unlike the experiments reported in the paper, we simplified the classification header and re-conducted the experiments, resulting in more prominent results with fewer parameters. The new results are as follows:

Experiments on the CIFAR-100 / 10 dataset

Model Name Group $G$ Equivariance CIFAR-100 Acc. #Param. CIFAR-10 Acc. #Param.
c2_sre_n $C_2$ SRE 76.95 325748 - 314138
c2_rre_n $C_2$ RRE 77.84 345140 - 333530
c4_sre_n $C_4$ SRE 80.79 625012 - -
c4_rre_n $C_4$ RRE 82.48 663796 - -
c6_sre_n $C_6$ SRE 81.36 924276 - -
c6_rre_n $C_6$ RRE 83.20 982452 - -
c8_sre_n $C_8$ SRE 82.52 1223540 - -
c8_rre_n $C_8$ RRE 83.63 1301108 - -
Model Name Group $G$ CIFAR-100 Acc. #Param. CIFAR-10 Acc. #Param.
c4_rre_n $C_4$ 82.48 663796 - -
c4_rre_s $C_4$ 84.47 2524548 - -
c4_rre_m $C_4$ 85.35 8061316 - -

You can train the model using the following command:

python classification/train.py -model [Model Name] -dataset [Dataset] -batch_size 128

[Model Name]: c2_sre_n, c2_rre_n, c4_sre_n, c4_rre_n, c4_rre_s, c4_rre_m, c6_sre_n, c6_rre_n, c8_sre_n, c8_rre_n

[Dataset]: cifar10, cifar100

Example command:

cd classification
python train.py -model c4_rre_n -dataset cifar100 -batch_size 128

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages