forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add ViPNAS ResNet models. (https://github.com/luminxu/ViPNAS)
- Loading branch information
Showing
13 changed files
with
1,676 additions
and
6 deletions.
There are no files selected for viewing
39 changes: 39 additions & 0 deletions
39
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_coco.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
<!-- [ALGORITHM] --> | ||
|
||
<details> | ||
<summary align="right">ViPNAS (CVPR'2021)</summary> | ||
|
||
```bibtex | ||
@article{xu2021vipnas, | ||
title={ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search}, | ||
author={Xu, Lumin and Guan, Yingda and Jin, Sheng and Liu, Wentao and Qian, Chen and Luo, Ping and Ouyang, Wanli and Wang, Xiaogang}, | ||
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, | ||
year={2021} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
<!-- [DATASET] --> | ||
|
||
<details> | ||
<summary align="right">COCO (ECCV'2014)</summary> | ||
|
||
```bibtex | ||
@inproceedings{lin2014microsoft, | ||
title={Microsoft coco: Common objects in context}, | ||
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence}, | ||
booktitle={European conference on computer vision}, | ||
pages={740--755}, | ||
year={2014}, | ||
organization={Springer} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset | ||
|
||
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log | | ||
| :-------------- | :-----------: | :------: | :------: | :------: | :------: | :------: |:------: |:------: | | ||
| [S-VipNAS-Res50](/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/s_vipnas_res50_coco_256x192.py) | 256x192 | 0.711 | 0.893 | 0.789 | 0.769 | 0.769 | [ckpt](https://download.openmmlab.com/mmpose/top_down/vipnas/vipnas_res50_coco_256x192-cc43b466_20210624.pth) | [log](https://download.openmmlab.com/mmpose/top_down/vipnas/vipnas_res50_coco_256x192_20210624.log.json) | |
142 changes: 142 additions & 0 deletions
142
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_res50_coco_256x192.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=10) | ||
evaluation = dict(interval=10, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=5e-4, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[170, 200]) | ||
total_epochs = 210 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
num_output_channels=17, | ||
dataset_joints=17, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], | ||
], | ||
inference_channel=[ | ||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | ||
]) | ||
|
||
# model settings | ||
model = dict( | ||
type='TopDown', | ||
pretrained=None, | ||
backbone=dict(type='ViPNAS_ResNet', depth=50), | ||
keypoint_head=dict( | ||
type='ViPNASHeatmapSimpleHead', | ||
in_channels=608, | ||
out_channels=channel_cfg['num_output_channels'], | ||
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), | ||
train_cfg=dict(), | ||
test_cfg=dict( | ||
flip_test=True, | ||
post_process='default', | ||
shift_heatmap=True, | ||
modulate_kernel=11)) | ||
|
||
data_cfg = dict( | ||
image_size=[192, 256], | ||
heatmap_size=[48, 64], | ||
num_output_channels=channel_cfg['num_output_channels'], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
soft_nms=False, | ||
nms_thr=1.0, | ||
oks_thr=0.9, | ||
vis_thr=0.2, | ||
use_gt_bbox=False, | ||
det_bbox_thr=0.0, | ||
bbox_file='data/coco/person_detection_results/' | ||
'COCO_val2017_detections_AP_H_56_person.json', | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='TopDownRandomFlip', flip_prob=0.5), | ||
dict( | ||
type='TopDownHalfBodyTransform', | ||
num_joints_half_body=8, | ||
prob_half_body=0.3), | ||
dict( | ||
type='TopDownGetRandomScaleRotation', rot_factor=30, | ||
scale_factor=0.25), | ||
dict(type='TopDownAffine'), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict(type='TopDownGenerateTarget', sigma=2), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'target', 'target_weight'], | ||
meta_keys=[ | ||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | ||
'rotation', 'bbox_score', 'flip_pairs' | ||
]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='TopDownAffine'), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=[ | ||
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | ||
'flip_pairs' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/coco' | ||
data = dict( | ||
samples_per_gpu=64, | ||
workers_per_gpu=2, | ||
val_dataloader=dict(samples_per_gpu=32), | ||
test_dataloader=dict(samples_per_gpu=32), | ||
train=dict( | ||
type='TopDownCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', | ||
img_prefix=f'{data_root}/train2017/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='TopDownCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='TopDownCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search | ||
|
||
## Introduction | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
<details> | ||
<summary align="right">ViPNAS (CVPR'2021)</summary> | ||
|
||
```bibtex | ||
@article{xu2021vipnas, | ||
title={ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search}, | ||
author={Xu, Lumin and Guan, Yingda and Jin, Sheng and Liu, Wentao and Qian, Chen and Luo, Ping and Ouyang, Wanli and Wang, Xiaogang}, | ||
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, | ||
year={2021} | ||
} | ||
``` | ||
|
||
</details> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.