Skip to content

Commit

Permalink
std.math.log_int: implement integer logarithm without using float math
Browse files Browse the repository at this point in the history
  • Loading branch information
FedericoStra authored Sep 14, 2023
1 parent 30e1883 commit 4f952c7
Show file tree
Hide file tree
Showing 3 changed files with 121 additions and 2 deletions.
2 changes: 2 additions & 0 deletions lib/std/math.zig
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,7 @@ pub const log = @import("math/log.zig").log;
pub const log2 = @import("math/log2.zig").log2;
pub const log10 = @import("math/log10.zig").log10;
pub const log10_int = @import("math/log10.zig").log10_int;
pub const log_int = @import("math/log_int.zig").log_int;
pub const log1p = @import("math/log1p.zig").log1p;
pub const asinh = @import("math/asinh.zig").asinh;
pub const acosh = @import("math/acosh.zig").acosh;
Expand Down Expand Up @@ -362,6 +363,7 @@ test {
_ = log2;
_ = log10;
_ = log10_int;
_ = log_int;
_ = log1p;
_ = asinh;
_ = acosh;
Expand Down
7 changes: 5 additions & 2 deletions lib/std/math/log.zig
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,17 @@ pub fn log(comptime T: type, base: T, x: T) T {
.ComptimeFloat => {
return @as(comptime_float, @log(@as(f64, x)) / @log(float_base));
},

// TODO: implement integer log without using float math.
// The present implementation is incorrect, for example
// `log(comptime_int, 9, 59049)` should return `5` and not `4`.
.ComptimeInt => {
return @as(comptime_int, @floor(@log(@as(f64, x)) / @log(float_base)));
},

// TODO implement integer log without using float math
.Int => |IntType| switch (IntType.signedness) {
.signed => @compileError("log not implemented for signed integers"),
.unsigned => return @as(T, @intFromFloat(@floor(@log(@as(f64, @floatFromInt(x))) / @log(float_base)))),
.unsigned => return @as(T, math.log_int(T, base, x)),
},

.Float => {
Expand Down
114 changes: 114 additions & 0 deletions lib/std/math/log_int.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const assert = std.debug.assert;
const Log2Int = math.Log2Int;

/// Returns the logarithm of `x` for the provided `base`, rounding down to the nearest integer.
/// Asserts that `base > 1` and `x > 0`.
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) {
if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
@compileError("log_int requires an unsigned integer, found " ++ @typeName(T));

assert(base > 1 and x > 0);

// Let's denote by [y] the integer part of y.

// Throughout the iteration the following invariant is preserved:
// power = base ^ exponent

// Safety and termination.
//
// We never overflow inside the loop because when we enter the loop we have
// power <= [maxInt(T) / base]
// therefore
// power * base <= maxInt(T)
// is a valid multiplication for type `T` and
// exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T))
// is a valid addition for type `Log2Int(T)`.
//
// This implies also termination because power is strictly increasing,
// hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop.

var exponent: Log2Int(T) = 0;
var power: T = 1;
while (power <= x / base) {
power *= base;
exponent += 1;
}

// If we never entered the loop we must have
// [x / base] < 1
// hence
// x <= [x / base] * base < base
// thus the result is 0. We can then return exponent, which is still 0.
//
// Otherwise, if we entered the loop at least once,
// when we exit the loop we have that power is exactly divisible by base and
// power / base <= [x / base] < power
// hence
// power <= [x / base] * base <= x < power * base
// This means that
// base^exponent <= x < base^(exponent+1)
// hence the result is exponent.

return exponent;
}

test "math.log_int" {
// Test all unsigned integers with 2, 3, ..., 64 bits.
// We cannot test 0 or 1 bits since base must be > 1.
inline for (2..64 + 1) |bits| {
const T = @Type(std.builtin.Type{
.Int = std.builtin.Type.Int{ .signedness = .unsigned, .bits = @intCast(bits) },
});

// for base = 2, 3, ..., min(maxInt(T),1024)
var base: T = 1;
while (base < math.maxInt(T) and base <= 1024) {
base += 1;

// test that `log_int(T, base, 1) == 0`
try testing.expectEqual(@as(Log2Int(T), 0), log_int(T, base, 1));

// For powers `pow = base^exp > 1` that fit inside T,
// test that `log_int` correctly detects the jump in the logarithm
// from `log(pow-1) == exp-1` to `log(pow) == exp`.
var exp: Log2Int(T) = 0;
var pow: T = 1;
while (pow <= math.maxInt(T) / base) {
exp += 1;
pow *= base;

try testing.expectEqual(exp - 1, log_int(T, base, pow - 1));
try testing.expectEqual(exp, log_int(T, base, pow));
}
}
}
}

test "math.log_int vs math.log2" {
const types = [_]type{ u2, u3, u4, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log2_int(T, n);
const general = log_int(T, 2, n);
try testing.expectEqual(special, general);
}
}
}

test "math.log_int vs math.log10" {
const types = [_]type{ u4, u5, u6, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log10_int(n);
const general = log_int(T, 10, n);
try testing.expectEqual(special, general);
}
}
}

0 comments on commit 4f952c7

Please sign in to comment.