forked from ziglang/zig
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
std.math.log_int: implement integer logarithm without using float math
- Loading branch information
1 parent
30e1883
commit 4f952c7
Showing
3 changed files
with
121 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
const std = @import("../std.zig"); | ||
const math = std.math; | ||
const testing = std.testing; | ||
const assert = std.debug.assert; | ||
const Log2Int = math.Log2Int; | ||
|
||
/// Returns the logarithm of `x` for the provided `base`, rounding down to the nearest integer. | ||
/// Asserts that `base > 1` and `x > 0`. | ||
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) { | ||
if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned) | ||
@compileError("log_int requires an unsigned integer, found " ++ @typeName(T)); | ||
|
||
assert(base > 1 and x > 0); | ||
|
||
// Let's denote by [y] the integer part of y. | ||
|
||
// Throughout the iteration the following invariant is preserved: | ||
// power = base ^ exponent | ||
|
||
// Safety and termination. | ||
// | ||
// We never overflow inside the loop because when we enter the loop we have | ||
// power <= [maxInt(T) / base] | ||
// therefore | ||
// power * base <= maxInt(T) | ||
// is a valid multiplication for type `T` and | ||
// exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T)) | ||
// is a valid addition for type `Log2Int(T)`. | ||
// | ||
// This implies also termination because power is strictly increasing, | ||
// hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop. | ||
|
||
var exponent: Log2Int(T) = 0; | ||
var power: T = 1; | ||
while (power <= x / base) { | ||
power *= base; | ||
exponent += 1; | ||
} | ||
|
||
// If we never entered the loop we must have | ||
// [x / base] < 1 | ||
// hence | ||
// x <= [x / base] * base < base | ||
// thus the result is 0. We can then return exponent, which is still 0. | ||
// | ||
// Otherwise, if we entered the loop at least once, | ||
// when we exit the loop we have that power is exactly divisible by base and | ||
// power / base <= [x / base] < power | ||
// hence | ||
// power <= [x / base] * base <= x < power * base | ||
// This means that | ||
// base^exponent <= x < base^(exponent+1) | ||
// hence the result is exponent. | ||
|
||
return exponent; | ||
} | ||
|
||
test "math.log_int" { | ||
// Test all unsigned integers with 2, 3, ..., 64 bits. | ||
// We cannot test 0 or 1 bits since base must be > 1. | ||
inline for (2..64 + 1) |bits| { | ||
const T = @Type(std.builtin.Type{ | ||
.Int = std.builtin.Type.Int{ .signedness = .unsigned, .bits = @intCast(bits) }, | ||
}); | ||
|
||
// for base = 2, 3, ..., min(maxInt(T),1024) | ||
var base: T = 1; | ||
while (base < math.maxInt(T) and base <= 1024) { | ||
base += 1; | ||
|
||
// test that `log_int(T, base, 1) == 0` | ||
try testing.expectEqual(@as(Log2Int(T), 0), log_int(T, base, 1)); | ||
|
||
// For powers `pow = base^exp > 1` that fit inside T, | ||
// test that `log_int` correctly detects the jump in the logarithm | ||
// from `log(pow-1) == exp-1` to `log(pow) == exp`. | ||
var exp: Log2Int(T) = 0; | ||
var pow: T = 1; | ||
while (pow <= math.maxInt(T) / base) { | ||
exp += 1; | ||
pow *= base; | ||
|
||
try testing.expectEqual(exp - 1, log_int(T, base, pow - 1)); | ||
try testing.expectEqual(exp, log_int(T, base, pow)); | ||
} | ||
} | ||
} | ||
} | ||
|
||
test "math.log_int vs math.log2" { | ||
const types = [_]type{ u2, u3, u4, u8, u16 }; | ||
inline for (types) |T| { | ||
var n: T = 0; | ||
while (n < math.maxInt(T)) { | ||
n += 1; | ||
const special = math.log2_int(T, n); | ||
const general = log_int(T, 2, n); | ||
try testing.expectEqual(special, general); | ||
} | ||
} | ||
} | ||
|
||
test "math.log_int vs math.log10" { | ||
const types = [_]type{ u4, u5, u6, u8, u16 }; | ||
inline for (types) |T| { | ||
var n: T = 0; | ||
while (n < math.maxInt(T)) { | ||
n += 1; | ||
const special = math.log10_int(n); | ||
const general = log_int(T, 10, n); | ||
try testing.expectEqual(special, general); | ||
} | ||
} | ||
} |