Skip to content

wi-pi/stochastic-preprocessing-defenses

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

On the Limitations of Stochastic Pre-processing Defenses

This repository is the official implementation of On the Limitations of Stochastic Pre-processing Defenses.

[Paper] [Recorded Talk] [Full Slides]

Poster

Requirements

Environments

To install requirements:

conda create -n your_env_name python=3.10
conda activate your_env_name
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch -y
pip install -r requirements.txt

Datasets

To prepare ImageNet:

  • Download the validation set from https://www.image-net.org
  • Extract to ./static/datasets/ so that the file structure becomes:
    src/
    static/datasets/imagenet/val/
      n01440764/*.JPEG
      n01775062/*.JPEG
      ...
      n07579787/*.JPEG
    

To prepare ImageNette:

  • Download the full dataset ("320 px") from https://github.com/fastai/imagenette
  • Extract to ./static/datasets/ so that the file structure becomes:
    src/
    static/datasets/imagenette2-320/
      train/
        n01440764/*.JPEG
        n02102040/*.JPEG
        ...
        n03888257/*.JPEG
      val/
        n01440764/*.JPEG
        n02102040/*.JPEG
        ...
        n03888257/*.JPEG
    

Pre-trained Models

To prepare models fine-tuned on ImageNet and Gaussian noise

  • Download models from https://github.com/locuslab/smoothing
  • Extract to ./static/models/ so that the file structure becomes:
    src/
    static/models/smoothing-models/imagenet/resnet50/
      noise_0.25/checkpoint.pth.tar
      noise_0.50/checkpoint.pth.tar
    

To prepare models fine-tuned on ImageNette

We provide three models pre-trained on ImageNette:

Filename Defenses Top-1 Accuracy (%)
ResNet34-ImageNette-Clean.ckpt N/A 96.31%
ResNet34-ImageNette-NoiseInjection.ckpt Noise Injection 94.65%
ResNet34-ImageNette-Gaussian0.50.ckpt Randomized Smoothing (sigma 0.50) 92.36%

Usage

Evaluate Defenses on ImageNet

To evaluate Random Rotation with targeted PGD-50 (eps 8/255, lr 1/255), EOT-1, and Vote 20:

python -m scripts.test_imagenet \
    --load r50 --mode vote --repeat 20 \
    --data-dir static/datasets/imagenet --data-skip 50 --batch 100 \
    --attack pgd --norm inf --eps 8 --lr 1 --step 50 --eot 1 --target 9 --random-init 1 \
    --defense Rotation --params degree=90

To evaluate Randomized Smoothing (sigma 0.25) with targeted PGD-50 (eps 8/255, lr 1/255), EOT-1, and Vote 500:

python -m scripts.test_imagenet \
    --load r50-s0.25 --mode vote --repeat 500 \
    --data-dir static/datasets/imagenet --data-skip 50 --batch 100 \
    --attack pgd --norm inf --eps 8 --lr 1 --step 50 --eot 1 --target 9 --random-init 1 \
    --defense GaussianNoisePyTorchNoClip --params variance=0.25

Fine-tune Models on ImageNette Processed by Defenses

To fine-tune the model on data processed by Noise Injection:

python -m scripts.train \
    --data imagenette --data-dir static/datasets --save static/models --version test \
    --max-epochs 30 --batch-size 256 --num-workers 16 \
    --lr 1e-3 --wd 1e-2 --load clean \
    --defenses NoiseInjectionPyTorch

To fine-tune the model on data processed by Gaussian noise (sigma 0.50):

python -m scripts.train \
    --data imagenette --data-dir static/datasets --save static/models --version test \
    --max-epochs 30 --batch-size 256 --num-workers 16 \
    --lr 1e-3 --wd 1e-2 --load clean \
    --defenses GaussianNoisePyTorch -p variance=0.50

Evaluate Defenses on ImageNette

To evaluate Noise Injection on the model before fine-tuning:

python -m scripts.test_imagenette \
    --load path/to/your/not/fine-tuned/model.ckpt \
    --mode vote --repeat 500 \
    --data-dir static/datasets/imagenette2-320 --data-skip 5 --batch 100 \
    --attack pgd --norm inf --eps 8 --lr 1 --step 50 --eot 1 --target 9 --random-init 1 \
    --defenses NoiseInjectionPyTorch

To evaluate Noise Injection on the model after fine-tuning:

python -m scripts.test_imagenette \
    --load path/to/your/fine-tuned/model.ckpt \
    --mode vote --repeat 500 \
    --data-dir static/datasets/imagenette2-320 --data-skip 5 --batch 100 \
    --attack pgd --norm inf --eps 8 --lr 1 --step 50 --eot 1 --target 9 --random-init 1 \
    --defenses NoiseInjectionPyTorch

Miscellaneous

To save the ImageNet image (ID 0) processed by Random Rotation (10 samples):

python -m scripts.visualize_defense \
    --dataset imagenet --data-dir static/datasets/imagenet \
    --id 0 -n 10 \
    --defense Rotation --params degree 90 \
    --save path/to/outputs --tag rotation90

Citation

If you find this work useful in your research, please cite our paper with the following BibTeX:

@inproceedings{gao2022limitations,
  author    = {Yue Gao and Ilia Shumailov and Kassem Fawaz and Nicolas Papernot},
  title     = {On the Limitations of Stochastic Pre-processing Defenses},
  booktitle = {Thirty-Sixth Conference on Neural Information Processing Systems},
  year      = {2022},
  url       = {https://openreview.net/forum?id=P_eBjUlzlV}
}

About

[NeurIPS 2022] On the Limitations of Stochastic Pre-processing Defenses

Resources

License

Stars

Watchers

Forks

Packages

No packages published