The examples below plot vehicle fuel economy (in miles per gallon) versus horsepower for a dataset from the altair project.
Set marker color by the Year
column and set the shape of the each marker
according to the Origin
column:
from altair import load_dataset
import matplotlib as mpl
import matplotlib.style
import matplotlib_helpers as mplh
import matplotlib_helpers.chart
# load data as a pandas DataFrame
cars = load_dataset('cars')
with mpl.style.context(['ggplot']):
mplh.chart.encode(cars,
x='Horsepower',
y='Miles_per_Gallon',
shape='Year',
color='Origin',
cell_size=5, fill=False)
Split plot into multiple subplots, with the subplot in each column
corresponding to a distinct value in the Origin
column.
The same type of handling can be applied using the row
keyword.
with mpl.style.context(['ggplot']):
mplh.chart.encode(cars,
x='Horsepower',
y='Miles_per_Gallon',
color='Year',
shape='Year',
column='Origin',
cell_size=5, fill=False)
By default, all plots share the same x
axis scale and y
axis scale. This
behaviour can be changed by setting the sharexscale
keyword argument or the
shareyscale
keyword argument.
For example, note that the subplots below all have different x
axis and y
axis scales.
with mpl.style.context(['ggplot']):
mplh.chart.encode(cars,
x='Horsepower',
y='Miles_per_Gallon',
color='Year',
shape='Year',
column='Origin',
sharexscale=False,
shareyscale=False,
cell_size=5, fill=False)