This provides C++ and Python bindings to cuFile, which enables GPUDirect Storage (GDS). KvikIO also works efficiently when GDS isn't available and can read/write both host and device data seamlessly. KvikIO
- Object Oriented API.
- Exception handling.
- Concurrent reads and writes using an internal thread pool.
- Non-blocking API.
- Python Zarr reader.
- Handle both host and device IO seamlessly.
- Provides Python bindings to nvCOMP.
To install users should have a working Linux machine with CUDA Toolkit installed (v11.4+) and a working compiler toolchain (C++17 and cmake).
The C++ bindings are header-only and depends on the CUDA Driver API. In order to build and run the example code, CMake and the CUDA Runtime API is required.
The Python package depends on the following packages:
- cython
- pip
- setuptools
- scikit-build
For nvCOMP, benchmarks, examples, and tests:
- pytest
- numpy
- cupy
Install the stable release from the rapidsai
channel like:
conda create -n kvikio_env -c rapidsai -c conda-forge kvikio
Install the kvikio
conda package from the rapidsai-nightly
channel like:
conda create -n kvikio_env -c rapidsai-nightly -c conda-forge python=3.9 cudatoolkit=11.5 kvikio
If the nightly install doesn't work, set channel_priority: flexible
in your .condarc
.
In order to setup a development environment run:
conda env create --name kvikio-dev --file conda/environments/kvikio_dev_cuda11.5.yml
To build the C++ example, go to the cpp
subdiretory and run:
mkdir build
cd build
cmake ..
make
Then run the example:
./examples/basic_io
To build and install the extension, go to the python
subdiretory and run:
python -m pip install .
One might have to define CUDA_HOME
to the path to the CUDA installation.
In order to test the installation, run the following:
pytest tests/
And to test performance, run the following:
python benchmarks/single-node-io.py
#include <cstddef>
#include <cuda_runtime.h>
#include <kvikio/file_handle.hpp>
using namespace std;
int main()
{
// Create two arrays `a` and `b`
constexpr std::size_t size = 100;
void *a = nullptr;
void *b = nullptr;
cudaMalloc(&a, size);
cudaMalloc(&b, size);
// Write `a` to file
kvikio::FileHandle fw("test-file", "w");
size_t written = fw.write(a, size);
fw.close();
// Read file into `b`
kvikio::FileHandle fr("test-file", "r");
size_t read = fr.read(b, size);
fr.close();
// Read file into `b` in parallel using 16 threads
kvikio::default_thread_pool::reset(16);
{
kvikio::FileHandle f("test-file", "r");
future<size_t> future = f.pread(b_dev, sizeof(a), 0); // Non-blocking
size_t read = future.get(); // Blocking
// Notice, `f` closes automatically on destruction.
}
}
import cupy
import kvikio
a = cupy.arange(100)
f = kvikio.CuFile("test-file", "w")
# Write whole array to file
f.write(a)
f.close()
b = cupy.empty_like(a)
f = kvikio.CuFile("test-file", "r")
# Read whole array from file
f.read(b)
assert all(a == b)
# Use contexmanager
c = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
f.read(c)
assert all(a == c)
# Non-blocking read
d = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
future1 = f.pread(d[:50])
future2 = f.pread(d[50:], file_offset=d[:50].nbytes)
future1.get() # Wait for first read
future2.get() # Wait for second read
assert all(a == d)