-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
179,694 additions
and
2,309 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
import numpy as np | ||
import re | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Activation, Dropout, Dense, LSTM | ||
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau | ||
from keras.optimizers import RMSprop | ||
|
||
|
||
class CharRNN: | ||
|
||
# global params | ||
MAXLEN = 30 | ||
STEP = 1 | ||
BATCH_SIZE = 350 | ||
|
||
VALIDATION_SPLIT_GEN = 0.95 | ||
GENERATOR_TRAINING = True | ||
|
||
# model params | ||
neuron_layers = [800, 800, 800] | ||
dropout_layers = [0.4, 0.2] | ||
# dense_layers = [320] | ||
|
||
def __init__(self, file_, generator_training_type=False): | ||
raw_text = open(file_, encoding="utf-8").read() | ||
raw_text = raw_text.lower() | ||
self.raw_text_ru = re.sub("[^а-я, .\n]", "", raw_text) | ||
self.chars = sorted(list(set(self.raw_text_ru))) | ||
self.n_chars = len(raw_text) | ||
self.n_vocab = len(self.chars) | ||
self.sentences = [] | ||
self.next_chars = [] | ||
self.model = Sequential() | ||
self.epoch = 0 | ||
self.X, self.y = None, None | ||
|
||
self.validation_set = self.raw_text_ru[int(len(self.raw_text_ru) * self.VALIDATION_SPLIT_GEN):] | ||
self.raw_text_ru = self.raw_text_ru[:int(len(self.raw_text_ru) * self.VALIDATION_SPLIT_GEN)] | ||
|
||
with open('data/sample_val.txt', 'w') as file: | ||
file.write(self.validation_set) | ||
|
||
print('Corpus train length: ', len(self.raw_text_ru)) | ||
print('Corpus val length : ', len(self.validation_set)) | ||
|
||
self.GENERATOR_TRAINING = generator_training_type | ||
|
||
def get_sentences(self): | ||
self.sentences = [] | ||
self.next_chars = [] | ||
for i in range(0, len(self.raw_text_ru) - self.MAXLEN, self.STEP): | ||
self.sentences.append(self.raw_text_ru[i: i + self.MAXLEN]) | ||
self.next_chars.append(self.raw_text_ru[i + self.MAXLEN]) | ||
print('Corpus length: ', len(self.sentences)) | ||
|
||
@staticmethod | ||
def sample(a, temperature=1.0): | ||
a = np.log(a) / temperature | ||
a = np.exp(a) / np.sum(np.exp(a)) | ||
if sum(a) > 1.0: | ||
a *= 1 - (sum(a) - 1) | ||
if sum(a) > 1.0: | ||
a *= 0.99999 | ||
return np.argmax(np.random.multinomial(1, a, 1)) | ||
|
||
def vectorization(self): | ||
char_to_int = dict((c, i) for i, c in enumerate(self.chars)) | ||
|
||
self.X = np.zeros((len(self.sentences), self.MAXLEN, len(self.chars)), dtype=np.bool) | ||
self.y = np.zeros((len(self.sentences), len(self.chars)), dtype=np.bool) | ||
for i, sentence in enumerate(self.sentences): | ||
for t, char in enumerate(sentence): | ||
self.X[i, t, char_to_int[char]] = 1 | ||
self.y[i, char_to_int[self.next_chars[i]]] = 1 | ||
|
||
def build_model(self, previous_save=None): | ||
self.model.add(LSTM(self.neuron_layers[0], | ||
batch_input_shape=(self.BATCH_SIZE, self.MAXLEN, len(self.chars)), | ||
return_sequences=True)) | ||
self.model.add(Dropout(self.dropout_layers[0])) | ||
|
||
if self.neuron_layers[1]: | ||
self.model.add(LSTM(self.neuron_layers[1], | ||
batch_input_shape=(self.BATCH_SIZE, self.MAXLEN, len(self.chars)), | ||
return_sequences=True)) | ||
self.model.add(Dropout(self.dropout_layers[1])) | ||
|
||
self.model.add(LSTM(self.neuron_layers[2], | ||
batch_input_shape=(self.BATCH_SIZE, self.MAXLEN, len(self.chars)), | ||
return_sequences=False)) | ||
|
||
# self.model.add(Dense(self.dense_layers[0])) | ||
self.model.add(Dense(output_dim=len(self.chars))) | ||
self.model.add(Activation('softmax')) | ||
|
||
if previous_save: | ||
self.model.load_weights(previous_save) | ||
|
||
rmsprop = RMSprop(lr=0.0001) # lr=0.001 till 25- epochs | ||
self.model.compile(loss='categorical_crossentropy', optimizer=rmsprop) | ||
|
||
model_json = self.model.to_json() | ||
with open('models_mega/current_model.json', 'w') as json_file: | ||
json_file.write(model_json) | ||
|
||
return self.model | ||
|
||
def train_model(self, from_epoch=0): | ||
if from_epoch: | ||
self.epoch = from_epoch | ||
|
||
for iteration in range(0, 10000): | ||
filepath = "models_mega/weights_ep_%s_loss_{loss:.3f}_val_loss_{val_loss:.3f}.hdf5" % (iteration + self.epoch) | ||
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False, mode='min') | ||
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2, min_lr=0.0001) | ||
# logger_ = NBatchLogger(display=1000) | ||
|
||
print("==============================================================") | ||
print("Epoch: ", self.epoch) | ||
|
||
self.model.fit(self.X, self.y, batch_size=self.BATCH_SIZE, nb_epoch=1, | ||
callbacks=[checkpoint, reduce_lr], | ||
shuffle=False, | ||
validation_split=0.1, | ||
verbose=1) | ||
|
||
""" helpers for train model with fit_generator """ | ||
|
||
def generate_text_slices_val(self): | ||
text = self.validation_set | ||
yield len(text), text[:self.MAXLEN] | ||
|
||
while True: | ||
for i in range(0, len(text) - self.MAXLEN, self.STEP): | ||
sentence = text[i: i + self.MAXLEN] | ||
next_char = text[i + self.MAXLEN] | ||
yield sentence, next_char | ||
|
||
def generate_text_slices(self): | ||
text = self.raw_text_ru | ||
yield len(text), text[:self.MAXLEN] | ||
|
||
while True: | ||
for i in range(0, len(text) - self.MAXLEN, self.STEP): | ||
sentence = text[i: i + self.MAXLEN] | ||
next_char = text[i + self.MAXLEN] | ||
yield sentence, next_char | ||
|
||
def generate_arrays_from_data(self, train=True): | ||
|
||
char_to_int = dict((c, i) for i, c in enumerate(self.chars)) | ||
|
||
if train: | ||
slices = self.generate_text_slices() | ||
else: | ||
slices = self.generate_text_slices_val() | ||
|
||
text_len, seed = next(slices) | ||
samples = (text_len - self.MAXLEN + self.STEP - 1) / self.STEP | ||
yield samples, seed | ||
|
||
while True: | ||
X = np.zeros((self.BATCH_SIZE, self.MAXLEN, len(self.chars)), dtype=np.bool) | ||
y = np.zeros((self.BATCH_SIZE, len(self.chars)), dtype=np.bool) | ||
for i in range(self.BATCH_SIZE): | ||
sentence, next_char = next(slices) | ||
for t, char in enumerate(sentence): | ||
X[i, t, char_to_int[char]] = 1 | ||
y[i, char_to_int[next_char]] = 1 | ||
yield X, y | ||
|
||
""" helpers for train model with fit_generator """ | ||
|
||
def train_model_generator(self, from_epoch=0): | ||
train_generator = self.generate_arrays_from_data(train=True) | ||
samples, seed = next(train_generator) | ||
print('samples per epoch %s' % samples) | ||
last_epoch = from_epoch | ||
|
||
self.model.metadata = {'epoch': 0, 'loss': [], 'val_loss': []} | ||
|
||
for epoch in range(last_epoch + 1, last_epoch + 10000): | ||
val_gen = self.generate_arrays_from_data(train=False) | ||
val_samples, _ = next(val_gen) | ||
|
||
filepath = "models_mega/weights_ep_%s_loss_{loss:.3f}_val_loss_{val_loss:.3f}.hdf5" % epoch | ||
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False, mode='min') | ||
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.8, patience=1, min_lr=0.0001) | ||
|
||
self.model.fit_generator(train_generator, validation_data=val_gen, | ||
nb_val_samples=val_samples, | ||
samples_per_epoch=samples, | ||
nb_epoch=1, max_q_size=10, | ||
callbacks=[checkpoint, reduce_lr], verbose=1) | ||
|
||
|
||
rnn_trainer = CharRNN('data/mega_sample.txt', generator_training_type=True) | ||
|
||
if rnn_trainer.GENERATOR_TRAINING: | ||
rnn_trainer.build_model(previous_save='models_mega/weights_ep_3_loss_1.278_val_loss_1.302.hdf5') | ||
print(rnn_trainer.model.summary()) | ||
rnn_trainer.train_model_generator(from_epoch=3) | ||
else: | ||
rnn_trainer.get_sentences() | ||
rnn_trainer.vectorization() | ||
rnn_trainer.build_model(previous_save=None) | ||
print(rnn_trainer.model.summary()) | ||
rnn_trainer.train_model(from_epoch=0) | ||
|
||
|
||
|
Oops, something went wrong.