-
Python >= 3.6
-
PyTorch >= 1.1.0
-
PyYAML, tqdm, tensorboardX
-
We provide the dependency file of our experimental environment, you can install all dependencies by creating a new anaconda virtual environment and running
pip install -r requirements.txt
-
Run
pip install -e torchlight
-
pip install timm==0.3.2 tensorboardX six
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- NW-UCLA
- Request dataset here: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp
- Download the skeleton-only datasets:
nturgbd_skeletons_s001_to_s017.zip
(NTU RGB+D 60)nturgbd_skeletons_s018_to_s032.zip
(NTU RGB+D 120)- Extract above files to
./data/nturgbd_raw
Put downloaded data into the following directory structure:
- data/
- NW-UCLA/
- all_sqe
... # raw data of NW-UCLA
- ntu/
- ntu120/
- nturgbd_raw/
- nturgb+d_skeletons/ # from `nturgbd_skeletons_s001_to_s017.zip`
...
- nturgb+d_skeletons120/ # from `nturgbd_skeletons_s018_to_s032.zip`
...
- Generate NTU RGB+D 60 or NTU RGB+D 120 dataset:
cd ./data/ntu # or cd ./data/ntu120
# Get skeleton of each performer
python get_raw_skes_data.py
# Remove the bad skeleton
python get_raw_denoised_data.py
# Transform the skeleton to the center of the first frame
python seq_transformation.py
- Run the following command:
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 main_modern.py --config <work_dir>/config.yaml --batch_size 32 --lr 4e-3 --update_freq 2 --model_ema true --model_ema_eval true --dist_url tcp://127.0.0.3:132
- To test the trained models saved in <work_dir>, run the following command:
python get_info.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0
- To ensemble the results of different modalities, run
python ensemble.py --dataset ntu120/xset \
--joint-dir work_dir/ntu120/xset252/TSGCNext3_jointmodern \
--bone-dir work_dir/ntu120/xset252/TSGCNext3_bonemodern \
--joint-motion-dir work_dir/ntu120/xset432/TSGCNext3_jointmodern \
--bone-motion-dir work_dir/ntu120/xset432/TSGCNext3_bonemodern \
--ema True
- Download pretrained models for producing the final results on NTU RGB+D 60&120 [Google Drive].
- Put files to <work_dir> and run Testing command to produce the final result.
This code is for paper "TSGCNeXt: Dynamic-Static Multi-Graph Convolution for Efficient Skeleton-Based Action Recognition with Long-term Learning Potential".
You can get paper here: https://arxiv.org/abs/2304.11631
PS:
如果您有疑问的话也可以加我的微信一起探讨,一起学习!
论文投稿限制,最新版论文先不放出了,更新一些实验和分析结果。