Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use CVAT brush tool (aka mask shape) when annotating instance segmentation masks #5319

Merged
merged 6 commits into from
Jan 2, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 97 additions & 12 deletions fiftyone/utils/cvat.py
Original file line number Diff line number Diff line change
Expand Up @@ -1587,6 +1587,31 @@ def from_image_dict(cls, d):
)


class HasCVATBinaryMask(object):
"""Mixin for CVAT annotations that store RLE format instance masks."""

@staticmethod
def _rle_to_binary_image_mask(rle, mask_width, mask_height):
mask = np.zeros(mask_width * mask_height, dtype=np.uint8)
counter = 0
for i, val in enumerate(rle):
if i % 2 == 1:
mask[counter : counter + val] = 1
counter += val
return mask.reshape(mask_height, mask_width)

@staticmethod
def _mask_to_cvat_rle(binary_mask):
counts = []
for i, (value, elements) in enumerate(
itertools.groupby(binary_mask.ravel(order="C"))
):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return counts


class HasCVATPoints(object):
"""Mixin for CVAT annotations that store a list of ``(x, y)`` pixel
coordinates.
Expand Down Expand Up @@ -5919,6 +5944,9 @@ def _parse_annotation(
if shape_type == "rectangle":
label_type = "detections"
label = cvat_shape.to_detection()
elif shape_type == "mask":
label_type = "detections"
label = cvat_shape.to_instance()
elif shape_type == "polygon":
if expected_label_type == "segmentation":
# A piece of a segmentation mask
Expand Down Expand Up @@ -6430,31 +6458,56 @@ def _create_detection_shapes(
if det.has_mask is None:
continue

polygon = det.to_polyline()
for points in polygon.points:
if len(points) < 3:
continue # CVAT polygons must contain >= 3 points
if self._server_version >= Version("2.3"):
x, y, _, _ = det.bounding_box
frame_width, frame_height = frame_size
mask_height, mask_width = det.mask.shape
xtl, ytl = round(x * frame_width), round(y * frame_height)
xbr, ybr = xtl + mask_width, ytl + mask_height

abs_points = HasCVATPoints._to_abs_points(
points, frame_size
)
flattened_points = list(
itertools.chain.from_iterable(abs_points)
)
# -1 to convert from CVAT indexing
rle = HasCVATBinaryMask._mask_to_cvat_rle(det.mask)
rle.extend([xtl, ytl, xbr - 1, ybr - 1])

curr_shapes.append(
{
"type": "polygon",
"type": "mask",
"occluded": is_occluded,
"z_order": 0,
"points": flattened_points,
"points": rle,
"label_id": class_name,
"group": group_id,
"frame": frame_id,
"source": "manual",
"attributes": deepcopy(attributes),
}
)
else:
polygon = det.to_polyline()
for points in polygon.points:
if len(points) < 3:
continue # CVAT polygons must contain >= 3 points

abs_points = HasCVATPoints._to_abs_points(
points, frame_size
)
flattened_points = list(
itertools.chain.from_iterable(abs_points)
)

curr_shapes.append(
{
"type": "polygon",
"occluded": is_occluded,
"z_order": 0,
"points": flattened_points,
"label_id": class_name,
"group": group_id,
"frame": frame_id,
"source": "manual",
"attributes": deepcopy(attributes),
}
)

if not curr_shapes:
continue
Expand Down Expand Up @@ -7103,6 +7156,38 @@ def to_detection(self):
self._set_attributes(label)
return label

def to_instance(self):
"""Converts this shape to a :class:`fiftyone.core.labels.Detection`
with instance mask.

Returns:
a :class:`fiftyone.core.labels.Detection`
"""
xtl, ytl, xbr, ybr = self.points[-4:]
rel = np.array(self.points[:-4], dtype=int)
frame_width, frame_height = self.frame_size

# +1 to convert from CVAT indexing
mask_w, mask_h = round(xbr - xtl) + 1, round(ybr - ytl) + 1
mask = HasCVATBinaryMask._rle_to_binary_image_mask(
rel, mask_height=mask_h, mask_width=mask_w
)

bbox = [
xtl / frame_width,
ytl / frame_height,
(xbr - xtl) / frame_width,
(ybr - ytl) / frame_height,
]
label = fol.Detection(
label=self.label,
bounding_box=bbox,
index=self.index,
mask=mask,
)
self._set_attributes(label)
return label

def to_polyline(self, closed=False, filled=False):
"""Converts this shape to a :class:`fiftyone.core.labels.Polyline`.

Expand Down
Loading