-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
165 additions
and
146 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,167 +1,204 @@ | ||
""" | ||
Example metrics. | ||
| Copyright 2017-2024, Voxel51, Inc. | ||
| Copyright 2017-2025, Voxel51, Inc. | ||
| `voxel51.com <https://voxel51.com/>`_ | ||
| | ||
""" | ||
|
||
import fiftyone as fo | ||
import fiftyone.operators as foo | ||
import fiftyone.operators.types as types | ||
import numpy as np | ||
import itertools | ||
|
||
import numpy as np | ||
|
||
class EvaluationMetric(foo.Operator): | ||
def get_parameters(self, ctx, inputs): | ||
pass | ||
|
||
def parse_parameters(self, ctx, params): | ||
pass | ||
|
||
def compute_by_sample(self, sample, eval_key, **kwargs): | ||
pass | ||
|
||
def compute(self, samples, eval_key, results, **kwargs): | ||
raise NotImplementedError("Subclass must implement compute()") | ||
|
||
def get_fields(self, samples, eval_key): | ||
return [] | ||
|
||
def rename(self, samples, eval_key, new_eval_key): | ||
dataset = samples._dataset | ||
for metric_field in self.get_fields(samples, eval_key): | ||
new_metric_field = metric_field.replace(eval_key, new_eval_key, 1) | ||
dataset.rename_sample_field(metric_field, new_metric_field) | ||
|
||
def cleanup(self, samples, eval_key): | ||
dataset = samples._dataset | ||
for metric_field in self.get_fields(samples, eval_key): | ||
dataset.delete_sample_field(metric_field, error_level=1) | ||
import fiftyone as fo | ||
import fiftyone.operators as foo | ||
from fiftyone import ViewField as F | ||
|
||
|
||
class ExampleMetric(EvaluationMetric): | ||
class ExampleMetric(foo.EvaluationMetric): | ||
@property | ||
def config(self): | ||
return foo.OperatorConfig( | ||
return foo.EvaluationMetricConfig( | ||
name="example_metric", | ||
label="Example metric", | ||
description="This is an example metric", | ||
metric_tags=None, | ||
description="An example evaluation metric", | ||
) | ||
|
||
def get_parameters(self, ctx, inputs): | ||
inputs.str( | ||
"value", | ||
label="Example parameter", | ||
description="This is an example metric parameter", | ||
label="Example value", | ||
description="The example value to store/return", | ||
default="foo", | ||
required=True, | ||
) | ||
|
||
def compute(self, samples, eval_key, results, value="foo"): | ||
def compute(self, samples, results, value="foo"): | ||
dataset = samples._dataset | ||
eval_key = results.key | ||
metric_field = f"{eval_key}_{self.config.name}" | ||
dataset.add_sample_field(metric_field, fo.StringField) | ||
samples.set_field(metric_field, value).save() | ||
|
||
return value | ||
|
||
def get_fields(self, samples, eval_key): | ||
expected_fields = [f"{eval_key}_{self.config.name}"] | ||
return list(filter(samples.has_field, expected_fields)) | ||
def get_fields(self, samples, config, eval_key): | ||
return [f"{eval_key}_{self.config.name}"] | ||
|
||
|
||
def _safe_mean(values): | ||
values = [v for v in values if v is not None] | ||
return np.mean(values) if values else None | ||
|
||
|
||
def _abs_error(ypred, ytrue): | ||
return abs(ypred - ytrue) | ||
|
||
|
||
class AbsoluteErrorMetric(EvaluationMetric): | ||
class MeanAbsoluteErrorMetric(foo.EvaluationMetric): | ||
@property | ||
def config(self): | ||
return foo.OperatorConfig( | ||
name="absolute_error", | ||
label="Absolute Error Metric", | ||
description="A metric for absolute error.", | ||
metric_tags=["regression"], | ||
return foo.EvaluationMetricConfig( | ||
name="mean_absolute_error", | ||
label="Mean Absolute Error", | ||
description="Computes the mean absolute error of the regression data", | ||
eval_types=["regression"], | ||
lower_is_better=True, | ||
) | ||
|
||
def compute_by_sample(self, sample, eval_key, ytrue, ypred): | ||
metric_field = f"{eval_key}_{self.config.name}" | ||
if sample.media_type == "video": | ||
frame_errors = list(map(_abs_error, ypred, ytrue)) | ||
for idx, frame in enumerate(sample.frames.values()): | ||
frame[metric_field] = frame_errors[idx] | ||
sample[metric_field] = _safe_mean(frame_errors) | ||
def compute(self, samples, results): | ||
dataset = samples._dataset | ||
eval_key = results.key | ||
is_frame_field = samples._is_frame_field(results.config.gt_field) | ||
|
||
ytrue = results.ytrue | ||
ypred = results.ypred | ||
missing = results.missing | ||
|
||
metric_field = f"{eval_key}_absolute_error" | ||
compute_error = _make_compute_error_fcn(_absolute_error, missing) | ||
|
||
if is_frame_field: | ||
# Split values back into frames | ||
frame_counts = samples.values(F("frames").length()) | ||
_ytrue = _unflatten(ytrue, frame_counts) | ||
_ypred = _unflatten(ypred, frame_counts) | ||
|
||
frame_errors = [ | ||
list(map(compute_error, _yp, _yt)) | ||
for _yp, _yt in zip(_ypred, _ytrue) | ||
] | ||
sample_errors = [_safe_mean(e) for e in frame_errors] | ||
|
||
errors = list(itertools.chain.from_iterable(frame_errors)) | ||
|
||
# Per-frame errors | ||
_metric_field = samples._FRAMES_PREFIX + metric_field | ||
samples.set_values(_metric_field, frame_errors) | ||
|
||
# Per-sample errors | ||
samples.set_values(metric_field, sample_errors) | ||
else: | ||
sample[metric_field] = _abs_error(ypred, ytrue) | ||
|
||
def compute(self, samples, eval_key, results): | ||
ypred, ytrue = results.ypred, results.ytrue | ||
start_idx = 0 | ||
for sample in samples.iter_samples(autosave=True): | ||
num_frames = ( | ||
len(sample._frames) if sample.media_type == "video" else 1 | ||
) | ||
self.compute_by_sample( | ||
sample, | ||
eval_key, | ||
ytrue=ytrue[start_idx : start_idx + num_frames], | ||
ypred=ypred[start_idx : start_idx + num_frames], | ||
) | ||
start_idx += num_frames | ||
|
||
def get_fields(self, samples, eval_key): | ||
metric_field = f"{eval_key}_{self.config.name}" | ||
expected_fields = [metric_field, samples._FRAMES_PREFIX + metric_field] | ||
return list(filter(samples.has_field, expected_fields)) | ||
# Per-sample errors | ||
errors = list(map(compute_error, ypred, ytrue)) | ||
samples.set_values(metric_field, errors) | ||
|
||
return _safe_mean(errors) | ||
|
||
def get_fields(self, samples, config, eval_key): | ||
metric_field = f"{eval_key}_absolute_error" | ||
|
||
fields = [metric_field] | ||
if samples._is_frame_field(config.gt_field): | ||
fields.append(samples._FRAMES_PREFIX + metric_field) | ||
|
||
class MeanAbsoluteErrorMetric(EvaluationMetric): | ||
return fields | ||
|
||
|
||
class MeanSquaredErrorMetric(foo.EvaluationMetric): | ||
@property | ||
def config(self): | ||
return foo.OperatorConfig( | ||
name="mean_absolute_error", | ||
label="Mean Absolute Error Metric", | ||
description="A metric for computing mean absolute error across all frames or samples.", | ||
metric_tags=["regression"], | ||
return foo.EvaluationMetricConfig( | ||
name="mean_squared_error", | ||
label="Mean Squared Error", | ||
description="Computes the mean squared error of the regression data", | ||
eval_types=["regression"], | ||
lower_is_better=True, | ||
) | ||
|
||
def get_parameters(self, ctx, inputs): | ||
eval_key = ctx.params.get("eval_key", None) | ||
inputs.str( | ||
"error_eval_key", | ||
label="Sample/Frame error eval key parameter", | ||
description="Sample/Frame error eval key to use for computing Mean Absolute Error", | ||
default=f"{eval_key}_absolute_error", | ||
required=True, | ||
) | ||
|
||
def compute(self, samples, eval_key, results, error_eval_key): | ||
def compute(self, samples, results): | ||
dataset = samples._dataset | ||
|
||
if dataset.has_field(dataset._FRAMES_PREFIX + error_eval_key): | ||
# Compute MAE across all frames. | ||
values = dataset.values(dataset._FRAMES_PREFIX + error_eval_key) | ||
values = list(itertools.chain.from_iterable(values)) | ||
elif dataset.has_field(error_eval_key): | ||
# Compute MAE across all samples. | ||
values = dataset.values(error_eval_key) | ||
eval_key = results.key | ||
is_frame_field = samples._is_frame_field(results.config.gt_field) | ||
|
||
ytrue = results.ytrue | ||
ypred = results.ypred | ||
missing = results.missing | ||
|
||
metric_field = f"{eval_key}_squared_error" | ||
compute_error = _make_compute_error_fcn(_squared_error, missing) | ||
|
||
if is_frame_field: | ||
# Split values back into frames | ||
frame_counts = samples.values(F("frames").length()) | ||
_ytrue = _unflatten(ytrue, frame_counts) | ||
_ypred = _unflatten(ypred, frame_counts) | ||
|
||
# Per-frame errors | ||
frame_errors = [ | ||
list(map(compute_error, _yp, _yt)) | ||
for _yp, _yt in zip(_ypred, _ytrue) | ||
] | ||
errors = list(itertools.chain.from_iterable(frame_errors)) | ||
_metric_field = samples._FRAMES_PREFIX + metric_field | ||
samples.set_values(_metric_field, frame_errors) | ||
|
||
# Per-sample mean errors | ||
sample_errors = [_safe_mean(e) for e in frame_errors] | ||
samples.set_values(metric_field, sample_errors) | ||
else: | ||
# Per-sample errors | ||
errors = list(map(compute_error, ypred, ytrue)) | ||
samples.set_values(metric_field, errors) | ||
|
||
return _safe_mean(errors) | ||
|
||
def get_fields(self, samples, config, eval_key): | ||
metric_field = f"{eval_key}_squared_error" | ||
|
||
fields = [metric_field] | ||
if samples._is_frame_field(config.gt_field): | ||
fields.append(samples._FRAMES_PREFIX + metric_field) | ||
|
||
return fields | ||
|
||
|
||
def _unflatten(values, counts): | ||
_values = iter(values) | ||
return [list(itertools.islice(_values, n)) for n in counts] | ||
|
||
|
||
def _make_compute_error_fcn(error_fcn, missing): | ||
def compute_error(yp, yt): | ||
if missing is not None: | ||
if yp is None: | ||
yp = missing | ||
|
||
if yt is None: | ||
yt = missing | ||
|
||
try: | ||
return error_fcn(yp, yt) | ||
except: | ||
return None | ||
|
||
return np.average(values).tolist() | ||
return compute_error | ||
|
||
|
||
def _absolute_error(ypred, ytrue): | ||
return np.abs(ypred - ytrue) | ||
|
||
|
||
def _squared_error(ypred, ytrue): | ||
return np.square(ypred - ytrue) | ||
|
||
|
||
def _safe_mean(values): | ||
values = [v for v in values if v is not None] | ||
return np.mean(values) if values else None | ||
|
||
|
||
def register(p): | ||
p.register(ExampleMetric) | ||
p.register(AbsoluteErrorMetric) | ||
p.register(MeanAbsoluteErrorMetric) | ||
p.register(MeanSquaredErrorMetric) |
Oops, something went wrong.