Official implementation of paper "Artificial Dummies for Urban Dataset Augmentation" accepted to AAAI 2021. [arXiv paper]
@inproceedings{vobecky2021artificial,
title={Artificial Dummies for Urban Dataset Augmentation},
author={Vobeck{\'y}, Anton{\'i}n and Hurych, David and U{\vr}i{\vc}{\'a}{\vr}, Michal and P{\'e}rez, Patrick and Sivic, Josef},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
pages={0--0},
year={2021}
}
Videos can be found here.
Note: The code is tested only on Linux distributions.
Run
git clone https://github.com/vobecant/DummyNet.git
cd DummyNet
conda env create -f environment.yml
conda activate DummyNet
to create and activate the new conda environment.
First, please download sample data and extract it to ./data
.
wget https://data.ciirc.cvut.cz/public/projects/DummyNet/data.tar.gz
tar -zxvf data.tar.gz
The structure of the ./data folder should be:
data/
YBB/
gan_test.json
...
test_samples_100.th
weights/
GAN_GEN_4.pth
...
MASK_ESTIMATOR.pth
To augment the NightOwls dataset, run:
python augment_nightowls.py ./data/weights ${SAVE_DIR} ./data/YBB/nightowls_bbs
The script takes three arguments. You need to set
SAVE_DIR
: directory where the extended dataset will be saved
To augment the CityPersons datasets, run:
python augment_cs.py ./data/weights/ ${CITYSCAPES_DIR} ${SAVE_DIR}
The script takes three arguments:
weights_dir
: path to the directory with weightsCITYSCAES_DIR
: path to the directory with Cityscapes dataset and CityPersons datasetSAVE_DIR
: directory where the extended dataset will be saved
To use the Pose Generator, please refer to README_pose_generator.txt
.
Required packages:
- numpy 1.16.5
- matplotlib 3.1.1
- jsonschema 3.0.2
- sklearn 0.21.2 (0.21.3 generates warning, but works too)
- joblib 0.13.2
- dill 0.3.3
First, you need to download joints_pca_etc.npz and pca_per_cluster.zip. To do this, you can run
wget https://data.ciirc.cvut.cz/public/projects/DummyNet/joints_pca_etc.npz
wget https://data.ciirc.cvut.cz/public/projects/DummyNet/pca_per_cluster.zip
and unzip it using
unzip pca_per_cluster.zip
Then set the paths in pose_generator.py
and run.
You can download CSP detector weights trained on CityPersons dataset here