- Our team implements natural language processing models to mine comparative opinions on table tennis products
- MongoDB, Sqlite3, Python, Flask, Dash, Plotly, Fastapi, CSS, Bootstrap, Heroku
- |-- EDA: Folders contain data analysis jupyter notebook
- |-- scraper: webscraping/data ETL module
- |-- comparison: Roberta classification model training using labelled data and inferencing on unlabelled data
- |-- information_retrieval: Extracting Entity, Attribute, Directions from comparative sentences
- |-- common: common utils (connect to db, data query)
- |-- viz: wordcloud visualization
- |-- frontend: dashboard
conda create -n ds4a-t15 python=3.7 pip
conda activate ds4a-t15
pip install -r requirements.txt
cd frontend/plotly
python app.py
- Open up Google Chrome Browse to http://127.0.0.1:8888
cd frontend/plotly/db
sqlite3
sqlite> .open tableTennisData.db
- Charlotte Giang
- Eyan Yeung
- Pooja Umathe
- Jessie Zhang
- Winnie Yeung (Team Lead)
- Slide Deck Presentation for DS4A conference (10/16/2020): https://bit.ly/35eXcqD