Implementation codes for the paper "3DInvNet: A Deep Learning-Based 3D Ground-Penetrating Radar Data Inversion"
-
Commands for training Inverter:
python workspace_Inverter/trainInvNet.py
--model InvNetModel_ff
--lossfc MAE_loss
--batch_size 4
--lr 0.001
--lr_decay 0.98
--max_epoch 100
--id MAE
--train_data_path dataset/train/mask1
--train_mask_path dataset/train/mask2
--test_data_path dataset/test/mask1
--test_mask_path dataset/test/mask2
--model_path workspace_Inverter/exp/model/
--visualization_path workspace_Inverter/exp/visual/
--save_model -
Commands for training Denoiser:
python workspace_Denoiser/trainDenoisingNet.py
--model DenoisingNetModel
--lossfc MSE_loss
--batch_size 4
--lr 0.001
--lr_decay 0.98
--max_epoch 100
--id MSE
--train_data_path dataset/train/data
--train_mask_path dataset/train/mask1
--test_data_path dataset/test/data
--test_mask_path dataset/test/mask1
--model_path workspace_Denoiser/exp/model/
--visualization_path workspace_Denoiser/exp/visual/
--save_model -
The simulated and real measured datasets can be found at https://drive.google.com/drive/folders/12mG7lA8g8KX55KPHmP9y3n4XxFZjLp4W?usp=sharing.
-
If any issues pls contact [email protected].