Skip to content

vietanhdev/samexporter

Repository files navigation

SAM Exporter - Now with Segment Anything 2!~~

Exporting Segment Anything, MobileSAM, and Segment Anything 2 into ONNX format for easy deployment.

PyPI version Downloads Downloads Downloads

Supported models:

  • Segment Anything 2 (Tiny, Small, Base, Large) - Note: Experimental. Only image input is supported for now.
  • Segment Anything (SAM ViT-B, SAM ViT-L, SAM ViT-H)
  • MobileSAM

Installation

Requirements:

  • Python 3.10+

From PyPi:

pip install torch==2.4.0 torchvision --index-url https://download.pytorch.org/whl/cpu
pip install samexporter

From source:

pip install torch==2.4.0 torchvision --index-url https://download.pytorch.org/whl/cpu
git clone https://github.com/vietanhdev/samexporter
cd samexporter
pip install -e .

Convert Segment Anything, MobileSAM to ONNX

original_models
   + sam_vit_b_01ec64.pth
   + sam_vit_h_4b8939.pth
   + sam_vit_l_0b3195.pth
   + mobile_sam.pt
   ...
  • Convert encoder SAM-H to ONNX format:
python -m samexporter.export_encoder --checkpoint original_models/sam_vit_h_4b8939.pth \
    --output output_models/sam_vit_h_4b8939.encoder.onnx \
    --model-type vit_h \
    --quantize-out output_models/sam_vit_h_4b8939.encoder.quant.onnx \
    --use-preprocess
  • Convert decoder SAM-H to ONNX format:
python -m samexporter.export_decoder --checkpoint original_models/sam_vit_h_4b8939.pth \
    --output output_models/sam_vit_h_4b8939.decoder.onnx \
    --model-type vit_h \
    --quantize-out output_models/sam_vit_h_4b8939.decoder.quant.onnx \
    --return-single-mask

Remove --return-single-mask if you want to return multiple masks.

  • Inference using the exported ONNX model:
python -m samexporter.inference \
    --encoder_model output_models/sam_vit_h_4b8939.encoder.onnx \
    --decoder_model output_models/sam_vit_h_4b8939.decoder.onnx \
    --image images/truck.jpg \
    --prompt images/truck_prompt.json \
    --output output_images/truck.png \
    --show

truck

python -m samexporter.inference \
    --encoder_model output_models/sam_vit_h_4b8939.encoder.onnx \
    --decoder_model output_models/sam_vit_h_4b8939.decoder.onnx \
    --image images/plants.png \
    --prompt images/plants_prompt1.json \
    --output output_images/plants_01.png \
    --show

plants_01

python -m samexporter.inference \
    --encoder_model output_models/sam_vit_h_4b8939.encoder.onnx \
    --decoder_model output_models/sam_vit_h_4b8939.decoder.onnx \
    --image images/plants.png \
    --prompt images/plants_prompt2.json \
    --output output_images/plants_02.png \
    --show

plants_02

Short options:

  • Convert all Segment Anything models to ONNX format:
bash convert_all_meta_sam.sh
  • Convert MobileSAM to ONNX format:
bash convert_mobile_sam.sh

Convert Segment Anything 2 to ONNX

cd original_models
bash download_sam2.sh

The models will be downloaded to the original_models folder:

original_models
    + sam2_hiera_tiny.pt
    + sam2_hiera_small.pt
    + sam2_hiera_base_plus.pt
    + sam2_hiera_large.pt
   ...
  • Install dependencies:
pip install git+https://github.com/facebookresearch/segment-anything-2.git
  • Convert all Segment Anything models to ONNX format:
bash convert_all_meta_sam2.sh
  • Inference using the exported ONNX model (only image input is supported for now):
python -m samexporter.inference \
    --encoder_model output_models/sam2_hiera_tiny.encoder.onnx \
    --decoder_model output_models/sam2_hiera_tiny.decoder.onnx \
    --image images/plants.png \
    --prompt images/truck_prompt_2.json \
    --output output_images/plants_prompt_2_sam2.png \
    --sam_variant sam2 \
    --show

truck_sam2

Tips

  • Use "quantized" models for faster inference and smaller model size. However, the accuracy may be lower than the original models.
  • SAM-B is the most lightweight model, but it has the lowest accuracy. SAM-H is the most accurate model, but it has the largest model size. SAM-M is a good trade-off between accuracy and model size.

AnyLabeling

This package was originally developed for auto labeling feature in AnyLabeling project. However, you can use it for other purposes.

AnyLabeling

License

This project is licensed under the MIT License - see the LICENSE file for details.

References