Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update dependency torchaudio to v2 #55

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented Mar 16, 2023

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
torchaudio ==0.11.0 -> ==2.5.1 age adoption passing confidence

Release Notes

pytorch/audio (torchaudio)

v2.5.1

Compare Source

v2.5.0: TorchAudio 2.5.0 Release

Compare Source

This release is compatible with PyTorch 2.5. There are no new features added.

This release contains one improvement:

v2.4.1: TorchAudio 2.4.1 Release

Compare Source

This release is compatible with PyTorch 2.4.1 patch release. There are no new features added.

v2.4.0: TorchAudio 2.4.0 Release

Compare Source

This release is compatible with PyTorch 2.4. There are no new features added.

This release contains 2 fixes:

v2.3.1: TorchAudio 2.3.1 Release

Compare Source

This release is compatible with PyTorch 2.3.1 patch release. There are no new features added.

v2.3.0: TorchAudio 2.3.0 Release

Compare Source

This release is compatible with PyTorch 2.3.0 patch release. There are no new features added.

This release contains minor documentation and code quality improvements (#​3734, #​3748, #​3757, #​3759)

v2.2.2: TorchAudio 2.2.2 Release

Compare Source

This release is compatible with PyTorch 2.2.2 patch release. There are no new features added.

v2.2.1: TorchAudio 2.2.1 Release

Compare Source

This release is compatible with PyTorch 2.2.1 patch release. There are no new features added.

v2.2.0: TorchAudio 2.2.0 Release

Compare Source

New Features

Bug Fixes

Recipe Updates

v2.1.2: TorchAudio 2.1.2 Release

Compare Source

This is a patch release, which is compatible with PyTorch 2.1.2. There are no new features added.

v2.1.1

Compare Source

This is a minor release, which is compatible with PyTorch 2.1.1 and includes bug fixes, improvements and documentation updates.

Bug Fixes

  • Cherry-pick 2.1.1: Fix WavLM bundles (#​3665)
  • Cherry-pick 2.1.1: Add back compression level in i/o dispatcher backend by (#​3666)

v2.1.0: Torchaudio 2.1 Release Note

Compare Source

Hilights

TorchAudio v2.1 introduces the new features and backward-incompatible changes;

  1. [BETA] A new API to apply filter, effects and codec
    torchaudio.io.AudioEffector can apply filters, effects and encodings to waveforms in online/offline fashion.
    You can use it as a form of augmentation.
    Please refer to https://pytorch.org/audio/2.1/tutorials/effector_tutorial.html for the examples.
  2. [BETA] Tools for forced alignment
    New functions and a pre-trained model for forced alignment were added.
    torchaudio.functional.forced_align computes alignment from an emission and torchaudio.pipelines.MMS_FA provides access to the model trained for multilingual forced alignment in MMS: Scaling Speech Technology to 1000+ languages project.
    Please refer to https://pytorch.org/audio/2.1/tutorials/ctc_forced_alignment_api_tutorial.html for the usage of forced_align function, and https://pytorch.org/audio/2.1/tutorials/forced_alignment_for_multilingual_data_tutorial.html for how one can use MMS_FA to align transcript in multiple languages.
  3. [BETA] TorchAudio-Squim : Models for reference-free speech assessment
    Model architectures and pre-trained models from the paper TorchAudio-Squim: Reference-less Speech Quality and Intelligibility measures in TorchAudio were added.
    You can use torchaudio.pipelines.SQUIM_SUBJECTIVE and torchaudio.pipelines.SQUIM_OBJECTIVE models to estimate the various speech quality and intelligibility metrics. This is helpful when evaluating the quality of speech generation models, such as TTS.
    Please refer to https://pytorch.org/audio/2.1/tutorials/squim_tutorial.html for the detail.
  4. [BETA] CUDA-based CTC decoder
    torchaudio.models.decoder.CUCTCDecoder takes emission stored in CUDA memory and performs CTC beam search on it in CUDA device. The beam search is fast. It eliminates the need to move data from CUDA device to CPU when performing automatic speech recognition. With PyTorch's CUDA support, it is now possible to perform the entire speech recognition pipeline in CUDA.
    Please refer to https://pytorch.org/audio/2.1/tutorials/asr_inference_with_cuda_ctc_decoder_tutorial.html for the detail.
  5. [Prototype] Utilities for AI music generation
    We are working to add utilities that are relevant to music AI. Since the last release, the following APIs were added to the prototype.
    Please refer to respective documentation for the usage.
    • torchaudio.prototype.chroma_filterbank
    • torchaudio.prototype.transforms.ChromaScale
    • torchaudio.prototype.transforms.ChromaSpectrogram
    • torchaudio.prototype.pipelines.VGGISH
  6. New recipes for training models.
    Recipes for Audio-visual ASR, multi-channel DNN beamforming and TCPGen context-biasing were added.
    Please refer to the recipes
  7. Update to FFmpeg support
    The version of supported FFmpeg libraries was updated.
    TorchAudio v2.1 works with FFmpeg 6, 5 and 4.4. The support for 4.3, 4.2 and 4.1 are dropped.
    Please refer to https://pytorch.org/audio/2.1/installation.html#optional-dependencies for the detail of the new FFmpeg integration mechanism.
  8. Update to libsox integration
    TorchAudio now depends on libsox installed separately from torchaudio. Sox I/O backend no longer supports file-like object. (This is supported by FFmpeg backend and soundfile)
    Please refer to https://pytorch.org/audio/2.1/installation.html#optional-dependencies for the detail.

New Features

I/O
  • Support overwriting PTS in torchaudio.io.StreamWriter (#​3135)
  • Include format information after filter torchaudio.io.StreamReader.get_out_stream_info (#​3155)
  • Support CUDA frame in torchaudio.io.StreamReader filter graph (#​3183, #​3479)
  • Support YUV444P in GPU decoder (#​3199)
  • Add additional filter graph processing to torchaudio.io.StreamWriter (#​3194)
  • Cache and reuse HW device context in GPU decoder (#​3178)
  • Cache and reuse HW device context in GPU encoder (#​3215)
  • Support changing the number of channels in torchaudio.io.StreamReader (#​3216)
  • Support encode spec change in torchaudio.io.StreamWriter (#​3207)
  • Support encode options such as compression rate and bit rate (#​3179, #​3203, #​3224)
  • Add 420p10le support to torchaudio.io.StreamReader CPU decoder (#​3332)
  • Support multiple FFmpeg versions (#​3464, #​3476)
  • Support writing opus and mp3 with soundfile (#​3554)
  • Add switch to disable sox integration and ffmpeg integration at runtime (#​3500)
Ops
Models
  • Add torchaudio.models.SquimObjective for speech enhancement (#​3042, 3087, #​3512)
  • Add torchaudio.models.SquimSubjective for speech enhancement (#​3189)
  • Add torchaudio.models.decoder.CUCTCDecoder (#​3096)
Pipelines
  • Add torchaudio.pipelines.SquimObjectiveBundle for speech enhancement (#​3103)
  • Add torchaudio.pipelines.SquimSubjectiveBundle for speech enhancement (#​3197)
  • Add torchaudio.pipelines.MMS_FA Bundle for forced alignment (#​3521, #​3538)
Tutorials
Recipe

Backward-incompatible changes

Third-party libraries

In this release, the following third party libraries are removed from TorchAudio binary distributions. TorchAudio now search and link these libraries at runtime. Please install them to use the corresponding APIs.

SoX

libsox is used for various audio I/O, filtering operations.

Pre-built binaries are avaialble via package managers, such as conda, apt and brew. Please refer to the respective documetation.

The APIs affected include;

  • torchaudio.load ("sox" backend)
  • torchaudio.info ("sox" backend)
  • torchaudio.save ("sox" backend)
  • torchaudio.sox_effects.apply_effects_tensor
  • torchaudio.sox_effects.apply_effects_file
  • torchaudio.functional.apply_codec (also deprecated, see below)

Changes related to the removal: #​3232, #​3246, #​3497, #​3035

Flashlight Text

flashlight-text is the core of CTC decoder.

Pre-built packages are available on PyPI. Please refer to https://github.com/flashlight/text for the detail.

The APIs affected include;

  • torchaudio.models.decoder.CTCDecoder

Changes related to the removal: #​3232, #​3246, #​3236, #​3339

Kaldi

A custom built libkaldi was used to implement torchaudio.functional.compute_kaldi_pitch. This function, along with libkaldi integration, is removed in this release. There is no replcement.

Changes related to the removal: #​3368, #​3403

I/O
  • Switch to the backend dispatcher (#​3241)

To make I/O operations more flexible, TorchAudio introduced the backend dispatcher in v2.0, and users could opt-in to use the dispatcher.
In this release, the backend dispatcher becomes the default mechanism for selecting the I/O backend.

You can pass backend argument to torchaudio.info, torchaudio.load and torchaudio.save function to select I/O backend library per-call basis. (If it is omitted, an available backend is automatically selected.)

If you want to use the global backend mechanism, you can set the environment variable, TORCHAUDIO_USE_BACKEND_DISPATCHER=0.
Please note, however, that this the global backend mechanism is deprecated and is going to be removed in the next release.

Please see #​2950 for the detail of migration work.

torchaudio.io.StreamReader accepted a byte-string wrapped in 1D torch.Tensor object. This is no longer supported.
Please wrap the underlying data with io.BytesIO instead.

The optional arguments of add_[audio|video]_stream methods of torchaudio.io.StreamReader and torchaudio.io.StreamWriter are now keyword-only arguments.

  • Drop the support of FFmpeg < 4.1 (#​3561, 3557)

Previously TorchAudio supported FFmpeg 4 (>=4.1, <=4.4). In this release, TorchAudio supports FFmpeg 4, 5 and 6 (>=4.4, <7). With this change, support for FFmpeg 4.1, 4.2 and 4.3 are dropped.

Ops
  • Use named file in torchaudio.functional.apply_codec (#​3397)

In previous versions, TorchAudio shipped custom built libsox, so that it can perform in-memory decoding and encoding.
Now, in-memory decoding and encoding are handled by FFmpeg binding, and with the switch to dynamic libsox linking, torchaudio.functional.apply_codec no longer process audio in in-memory fashion. Instead it writes to temporary file.
For in-memory processing, please use torchaudio.io.AudioEffector.

  • Switch to lstsq when solving InverseMelScale (#​3280)

Previously, torchaudio.transform.InverseMelScale ran SGD optimizer to find the inverse of mel-scale transform. This approach has number of issues as listed in #​2643.

This release switches to use torch.linalg.lstsq.

Models

The infer method of torchaudio.models.RNNTBeamSearch has been updated to accept series of previous hypotheses.

bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH
decoder: RNNTBeamSearch = bundle.get_decoder()

hypothesis = None
while streaming:
    ...
    hypo, state = decoder.infer(
        features,
        length,
        beam_width,
        state=state,
        hypothesis=hypothesis,
    )
    ...
    hypothesis = hypo

### Previously this had to be hypothesis = hypo[0]

Deprecations

Ops
  • Update and deprecate torchaudio.functional.apply_codec function (#​3386)

Due to the removal of custom libsox binding, torchaudio.functional.apply_codec no longer supports in-memory processing. Please migrate to torchaudio.io.AudioEffector.

Please refer to for the detailed usage of torchaudio.io.AudioEffector.

Bug Fixes

Models
  • Fix the negative sampling in ConformerWav2Vec2PretrainModel (#​3085)
  • Fix extract_features method for WavLM models (#​3350)
Tutorials
  • Fix backtracking in forced alignment tutorial (#​3440)
  • Fix initialization of get_trellis in forced alignment tutorial (#​3172)
Build
  • Fix MKL issue on Intel mac build (#​3307)
I/O
  • Surpress warning when saving vorbis with sox backend (#​3359)
  • Fix g722 encoding in torchaudio.io.StreamWriter (#​3373)
  • Refactor arg mapping in ffmpeg save function (#​3387)
  • Fix save INT16 sox backend (#​3524)
  • Fix SoundfileBackend method decorators (#​3550)
  • Fix PTS initialization when using NVIDIA encoder (#​3312)
Ops
  • Add non-default CUDA device support to lfilter (#​3432)

Improvements

I/O
Ops
  • Add arbitrary dim Tensor support to mask_along_axis{,_iid} (#​3289)
  • Fix resampling to support dynamic input lengths for onnx exports. (#​3473)
  • Optimize Torchaudio Vad (#​3382)
Documentation
  • Build and use GPU-enabled FFmpeg in doc CI (#​3045)
  • Misc tutorial update (#​3449)
  • Update notes on FFmpeg version (#​3480)
  • Update documentation about dependencies (#​3517)
  • Update I/O and backend docs (#​3555)
Tutorials
  • Update data augmentation tutorial (#​3375)
  • Add more explanation about n_fft (#​3442)
Build
Recipe
  • Fix Adam and AdamW initializers in wav2letter example (#​3145)
  • Update Librispeech RNNT recipe to support Lightening 2.0 (#​3336)
  • Update HuBERT/SSL training recipes to support Lightning 2.x (#​3396)
  • Add wav2vec2 loss function in self_supervised_learning training recipe (#​3090)
  • Add Wav2Vec2DataModule in self_supervised_learning training recipe (#​3081)
Other
  • Use FFmpeg6 in build doc (#​3475)
  • Use FFmpeg6 in unit test (#​3570)
  • Migrate torch.norm to torch.linalg.vector_norm (#​3522)
  • Migrate torch.nn.utils.weight_norm to nn.utils.parametrizations.weight_norm (#​3523)

v2.0.2

Compare Source

TorchAudio 2.0.2 Release Note

This is a minor release, which is compatible with PyTorch 2.0.1 and includes bug fixes, improvements and documentation updates. There is no new feature added.

Bug fix

Full Changelog: pytorch/audio@v2.0.1...v2.0.2

v2.0.1: Torchaudio 2.0 Release Note

Highlights

TorchAudio 2.0 release includes:

  • Data augmentation operators, e.g. convolution, additive noise, speed perturbation
  • WavLM and XLS-R models and pre-trained pipelines
  • Backend dispatcher powering revised info, load, save functions
  • Dropped support of Python 3.7
  • Added Python 3.11 support
[Beta] Data augmentation operators

The release adds several data augmentation operators under torchaudio.functional and torchaudio.transforms:

  • torchaudio.functional.add_noise
  • torchaudio.functional.convolve
  • torchaudio.functional.deemphasis
  • torchaudio.functional.fftconvolve
  • torchaudio.functional.preemphasis
  • torchaudio.functional.speed
  • torchaudio.transforms.AddNoise
  • torchaudio.transforms.Convolve
  • torchaudio.transforms.Deemphasis
  • torchaudio.transforms.FFTConvolve
  • torchaudio.transforms.Preemphasis
  • torchaudio.transforms.Speed
  • torchaudio.transforms.SpeedPerturbation

The operators can be used to synthetically diversify training data to improve the generalizability of downstream models.

For usage details, please refer to the documentation for torchaudio.functional and torchaudio.transforms, and tutorial “Audio Data Augmentation”.

[Beta] WavLM and XLS-R models and pre-trained pipelines

The release adds two self-supervised learning models for speech and audio.

  • WavLM that is robust to noise and reverberation.
  • XLS-R that is trained on cross-lingual datasets.

Besides the model architectures, torchaudio also supports corresponding pre-trained pipelines:

  • torchaudio.pipelines.WAVLM_BASE
  • torchaudio.pipelines.WAVLM_BASE_PLUS
  • torchaudio.pipelines.WAVLM_LARGE
  • torchaudio.pipelines.WAV2VEC_XLSR_300M
  • torchaudio.pipelines.WAV2VEC_XLSR_1B
  • torchaudio.pipelines.WAV2VEC_XLSR_2B

For usage details, please refer to factory function and pre-trained pipelines documentation.

Backend dispatcher

Release 2.0 introduces new versions of I/O functions torchaudio.info, torchaudio.load and torchaudio.save, backed by a dispatcher that allows for selecting one of backends FFmpeg, SoX, and SoundFile to use, subject to library availability. Users can enable the new logic in Release 2.0 by setting the environment variable TORCHAUDIO_USE_BACKEND_DISPATCHER=1; the new logic will be enabled by default in Release 2.1.

### Fetch metadata using FFmpeg
metadata = torchaudio.info("test.wav", backend="ffmpeg")

### Load audio (with no backend parameter value provided, function prioritizes using FFmpeg if it is available)
waveform, rate = torchaudio.load("test.wav")

### Write audio using SoX
torchaudio.save("out.wav", waveform, rate, backend="sox")

Please see the documentation for torchaudio for more details.

Backward-incompatible changes

  • Dropped Python 3.7 support (#​3020)
    Following the upstream PyTorhttps://github.com/pytorch/pytorch/pull/931553155), the support for Python 3.7 has been dropped.

  • Default to "precise" seek in torchaudio.io.StreamReader.seek (#​2737, #​2841, #​2915, #​2916, #​2970)
    Previously, the StreamReader.seek method seeked into a key frame closest to the given time stamp. A new option mode has been added which can switch the behavior to seeking into any type of frame, including non-key frames, that is closest to the given timestamp, and this behavior is now default.

  • Removed deprecated/unused/undocumented functions from datasets.utils (#​2926, #​2927)
    The following functions are removed from datasets.utils

    • stream_url
    • download_url
    • validate_file
    • extract_archive.

Deprecations

Ops
  • Deprecated 'onesided' init param for MelSpectrogram (#​2797, #​2799)
    torchaudio.transforms.MelSpectrogram assumes the onesided argument to be always True. The forward path fails if its value is False. Therefore this argument is deprecated. Users specifying this argument should stop specifying it.

  • Deprecated "sinc_interpolation" and "kaiser_window" option value in favor of "sinc_interp_hann" and "sinc_interp_kaiser" (#​2922)
    The valid values of resampling_method argument of resampling operations (torchaudio.transforms.Resample and torchaudio.functional.resample) are changed. "kaiser_window" is now "sinc_interp_kaiser" and "sinc_interpolation" is "sinc_interp_hann". The old values will continue to work, but users are encouraged to update their code.
    For the reason behind of this change, please refer #​2891.

  • Deprecated sox initialization/shutdown public API functions (#​3010)
    torchaudio.sox_effects.init_sox_effects and torchaudio.sox_effects.shutdown_sox_effects are deprecated. They were required to use libsox-related features, but are called automatically since v0.6, and the initialization/shutdown mechanism have been moved elsewhere. These functions are now no-op. Users can simply remove the call to these functions.

Models
  • Deprecated static binding of Flashlight-text based CTC decoder (#​3055, #​3089)
    Since v0.12, TorchAudio binary distributions included the CTC decoder based on flashlight-text project. In a future release, TorchAudio will switch to dynamic binding of underlying CTC decoder implementation, and stop shipping the core CTC decoder implementations. Users who would like to use the CTC decoder need to separately install the CTC decoder from the upstream flashlight-text project. Other functionalities of TorchAudio will continue to work without flashlight-text.
    Note: The API and numerical behavior does not change.
    For more detail, please refer #​3088.
I/O
  • Deprecated file-like object support in sox_io (#​3033)
    As a preparation to switch to dynamically bound libsox, file-like object support in sox_io backend has been deprecated. It will be removed in 2.1 release in favor of the dispatcher. This deprecation affects the following functionalities.
    • I/O: torchaudio.load, torchaudio.info and torchaudio.save.
    • Effects: torchaudio.sox_effects.apply_effects_file and torchaudio.functional.apply_codec.
      For I/O, to continue using file-like objects, please use the new dispatcher mechanism.
      For effects, replacement functions will be added in the next release.
  • Deprecated the use of Tensor as a container for byte string in StreamReader (#​3086)
    torchaudio.io.StreamReader supports decoding media from byte strings contained in 1D tensors of torch.uint8 type. Using torch.Tensor type as a container for byte string is now deprecated. To pass byte strings, please wrap the string with io.BytesIO.
    Deprecated Migration
    data = b"..."
    src = torch.frombuffer(data, dtype=torch.uint8)
    StreamReader(src)
    data = b"..."
    src = io.BytesIO(data)
    StreamReader(src)

Bug Fixes

Ops
  • Fixed contiguous error when backpropagating through torchaudio.functional.lfilter (#​3080)
Pipelines
  • Added layer normalization to wav2vec2 large+ pretrained models (#​2873)
    In self-supervised learning models such as Wav2Vec 2.0, HuBERT, or WavLM, layer normalization should be applied to waveforms if the convolutional feature extraction module uses layer normalization and is trained on a large-scale dataset. After adding layer normalization to those affected models, the Word Error Rate is significantly reduced.

Without the change in #​2873, the WER results are:

Model dev-clean dev-other test-clean test-other
WAV2VEC2_ASR_LARGE_LV60K_10M 10.59 15.62 9.58 16.33
WAV2VEC2_ASR_LARGE_LV60K_100H 2.80 6.01 2.82 6.34
WAV2VEC2_ASR_LARGE_LV60K_960H 2.36 4.43 2.41 4.96
HUBERT_ASR_LARGE 1.85 3.46 2.09 3.89
HUBERT_ASR_XLARGE 2.21 3.40 2.26 4.05

After applying layer normalization, the updated WER results are:

Model dev-clean dev-other test-clean test-other
WAV2VEC2_ASR_LARGE_LV60K_10M 6.77 10.03 6.87 10.51
WAV2VEC2_ASR_LARGE_LV60K_100H 2.19 4.55 2.32 4.64
WAV2VEC2_ASR_LARGE_LV60K_960H 1.78 3.51 2.03 3.68
HUBERT_ASR_LARGE 1.77 3.32 2.03 3.68
HUBERT_ASR_XLARGE 1.73 2.72 1.90 3.16
Recipe
  • Fixed DDP training in HuBERT recipes (#​3068)
    If shuffle is set True in BucketizeBatchSampler, the seed is only the same for the first epoch. In later epochs, each BucketizeBatchSampler object will generate a different shuffled iteration list, which may cause DPP training to hang forever if the lengths of iteration lists are different across nodes. In the 2.0.0 release, the issue is fixed by using the same seed for RNG in all nodes.
IO
  • Fixed signature mismatch on _fail_info_fileobj (#​3032)
  • Remove unnecessary AVFrame allocation (#​3021)
    This fixes the memory leak reported in torchaudio.io.StreamReader.

New Features

Ops
Models
Pipelines
I/O
  • Added rgb48le and CUDA p010 support (HDR/10bit) to StreamReader (#​3023)
  • Added fill_buffer method to torchaudio.io.StreamReader (#​2954, #​2971)
  • Added buffer_chunk_size=-1 option to torchaudio.io.StreamReader (#​2969)
    When buffer_chunk_size=-1, StreamReader does not drop any buffered frame. Together with the fill_buffer method, this is a recommended way to load the entire media.
    reader = StreamReader("video.mp4")
    reader.add_basic_audio_stream(buffer_chunk_size=-1)
    reader.add_basic_video_stream(buffer_chunk_size=-1)
    reader.fill_buffer()
    audio, video = reader.pop_chunks()
  • Added PTS support to torchaudio.io.StreamReader (#​2975)
    torchaudio.io.SteramReader now gives PTS (presentation time stamp) of the media chunk it is returning. To maintain backward compatibility, the timestamp information is attached to the returned media chunk.
    reader = StreamReader(...)
    reader.add_basic_audio_stream(...)
    reader.add_basic_video_stream(...)
    for audio_chunk, video_chunk in reader.stream():

Fetch timestamp

    print(audio_chunk.pts)
    print(video_chunk.pts)

Chunks behave the same as torch.Tensor.

    audio_chunk.mean(dim=1)
```
Other
  • Add utility functions to check information about FFmpeg (#​2958, #​3014)
    The following functions are added to torchaudio.utils.ffmpeg_utils, which can be used to query into the dynamically linked FFmpeg libraries.
    • get_demuxers()
    • get_muxers()
    • get_audio_decoders()
    • get_audio_encoders()
    • get_video_decoders()
    • get_video_encoders()
    • get_input_devices()
    • get_output_devices()
    • get_input_protocols()
    • get_output_protocols()
    • get_build_config()
Recipes
  • Add modularized SSL training recipe (#​2876)

Improvements

I/O
  • Refactor StreamReader/Writer implementation

  • Added logging to torchaudio.io.StreamReader/Writer (#​2878)

  • Fixed the #threads used by FilterGraph to 1 (#​2985)

  • Fixed the default #threads used by decoder to 1 in torchaudio.io.StreamReader (#​2949)

  • Moved libsox integration from libtorchaudio to libtorchaudio_sox (#​2929)

  • Added query methods to FilterGraph (#​2976)

Ops
  • Added logging to MelSpectrogram and Spectrogram (#​2861)
  • Fixed filtering function fallback mechanism (#​2953)
  • Enabled log probs input for RNN-T loss (#​2798)
  • Refactored extension modules initialization (#​2968)
  • Updated the guard mechanism for FFmpeg-related features (#​3028)
  • Updated the guard mechanism for cuda_version (#​2952)
Models
  • Renamed generator to vocoder in HiFiGAN model and factory functions (#​2955)
  • Enforces contiguous tensor in CTC decoder (#​3074)
Datasets
  • Validates the input path in LibriMix dataset (#​2944)
Documentation
  • Fixed docs warnings for conformer w2v2 (#​2900)
  • Updated model documentation structure (#​2902)
  • Fixed document for MelScale and InverseMelScale (#​2967)
  • Updated highlighting in doc (#​3000)
  • Added installation / build instruction to doc (#​3038)
  • Redirect build instruction to official doc (#​3053)
  • Tweak docs around IO (#​3064)
  • Improved docstring about input path to LibriMix (#​2937)
Recipes
  • Simplify train step in Conformer RNN-T LibriSpeech recipe (#​2981)
  • Update WER results for CTC n-gram decoding (#​3070)
  • Update ssl example (#​3060)
  • fix import bug in global_stats.py (#​2858)
  • Fixes examples/source_separation for WSJ0_2mix dataset (#​2987)
Tutorials
  • Added mel spectrogram visualization to Streaming ASR tutorial (#​2974)
  • Fixed mel spectrogram visualization in TTS tutorial (#​2989)
  • Updated data augmentation tutorial to use new operators (#​3062)
  • Fixed hybrid demucs tutorial for CUDA (#​3017)
  • Updated hardware accelerated video processing tutorial (#​3050)
Builds
Tests
  • Fix integration test for WAV2VEC2_ASR_LARGE_LV60K_10M (#​2910)
  • Fix CI tests on gpu machines (#​2982)
  • Remove function input parameters from data aug functional tests (#​3011)
  • Reduce the sample rate of some tests (#​2963)
Style
  • Fix type of arguments in torchaudio.io classes (#​2913)

v0.13.1: TorchAudio 0.13.1 Release Note

Compare Source

This is a minor release, which is compatible with PyTorch 1.13.1 and includes bug fixes, improvements and documentation updates. There is no new feature added.

Bug Fix

IO

  • Make buffer size configurable in ffmpeg file object operations and set size in backend (#​2810)
  • Fix issue with the missing video frame i

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from c8fe846 to e16a326 Compare May 28, 2023 10:53
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from e16a326 to 7386426 Compare October 4, 2023 19:09
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 7386426 to 68de19b Compare November 15, 2023 17:13
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 68de19b to 335d201 Compare December 15, 2023 01:04
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 335d201 to 97bb872 Compare January 30, 2024 19:16
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 97bb872 to fcb2360 Compare February 22, 2024 21:46
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from fcb2360 to b97f861 Compare March 27, 2024 21:57
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from b97f861 to ce7d615 Compare April 24, 2024 17:43
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from ce7d615 to 2746c3e Compare June 5, 2024 18:16
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 2746c3e to 5a50251 Compare July 24, 2024 16:06
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 5a50251 to 6dc1b7b Compare September 4, 2024 19:26
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 6dc1b7b to 0422075 Compare October 17, 2024 15:18
@renovate renovate bot force-pushed the renovate/torchaudio-2.x branch from 0422075 to 2ee8b7d Compare October 29, 2024 20:24
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants