scrapper.py
- scrapper from MLS system, dowload data about Montreal and the South Shore, stored information in gzipped json fileskijiji_scraper.py
- generic kijiji scrapper, stored information inproperty.sqlite3
databasesummarize.py
- processed data from MLS system, from gzipped json file(s) and stores it inproperty.sqlite3
preprocess_data.R
- R script , performing some basic preoprocessing and filtering data fromproperty.sqlite3
outputspreprocessed.RData
environment.yml
- conda environment descriptionrun_scrapper.sh
- template of a shell script tying it all togetherindex.Rmd
- knitr script, used to generate http://www.ilmarin.info/re_mtlstats_habr.Rmd
- knitr script , used to generate http://www.ilmarin.info/re_mtl/stats_habr.html
these files can be downloaded from https://github.com/vfonov/re_mtl/releases/tag/v0.0
uniteevaluationfonciere.geojson.xz
- downloaded from http://donnees.ville.montreal.qc.ca/dataset/unites-evaluation-fonciere/resource/866a3dbc-8b59-48ff-866d-f2f9d3bbee9dproperty.sqlite3.xz
- archive of the raw property datapreprocessed.RData
- preprocessed data, generated fromproperty.sqlite3
bypreprocess_data.R
script
- R version 3.6
conda env create --name re_mtl -f environment.yml
# to download preprocessed data
curl -L https://github.com/vfonov/re_mtl/releases/download/v0.0/preprocessed.RData -o preprocessed.RData
# to download raw data
curl -L https://github.com/vfonov/re_mtl/releases/download/v0.0/property.sqlite3.xz -o property.sqlite3.xz
unxz property.sqlite3.xz
conda activate re_mtl
# to regenerate preprocessed.RData
Rscript preprocess_data.R
# to regenerate contents of http://www.ilmarin.info/re_mtl/
Rscript -e "rmarkdown::render_site('index.Rmd')"