- GNU Make
>= 4
(or manually copy the commands from theMakefile
recipes)
Build the local images
make
Download the purchases.txt
file if not already
cd data
curl -L http://content.udacity-data.com/courses/ud617/purchases.txt.gz --output purchases.txt.gz
gzip -d purchases.txt.gz
To deploy an example HDFS cluster, run:
make up
Run example wordcount job:
make wordcount
Access the hadoop interfaces with the following URLs:
- Namenode: http://localhost:9870/dfshealth.html#tab-overview
- History server: http://localhost:8188/applicationhistory
- Datanode: http://localhost:9864/
- Nodemanager: http://localhost:8042/node
- Resource manager: http://localhost:8088/
You can open a shell with direct access to hadoop as follows
make shell
In the opened shell, you can directly communicate with HDFS. Here's an example
# Clean up old data (if any)
hadoop fs -rm -r /output
rm -rf /data/output
# Copy the file to HDFS
hadoop fs -mkdir /input
hadoop fs -copyFromLocal /opt/hadoop-3.3.6/README.txt /input/
# Run the wordcount job
hadoop jar /data/WordCount.jar WordCount /input /output
# Copy the output to local
hadoop fs -copyToLocal /output /data/output
This expects the purchases file to exist at ./data/purchases.txt. It is not included in the repository due due to its size.
# Clean up old data (if any)
hadoop fs -rm -r /myInput
hadoop fs -rm -r /myOutput
# Create the input directory in hadoop and copy the data there
hadoop fs -mkdir /myInput
hadoop fs -put /data/purchases.txt /myInput
# Run the map/reduce job (file option is local, not in hdfs)
mapred streaming \
-file /data/sample/mapper.py -mapper '/usr/bin/python3 mapper.py' \
-file /data/sample/reducer.py -reducer '/usr/bin/python3 reducer.py' \
-input /myInput -output /myOutput
# Copy the output to local
hadoop fs -copyToLocal /myOutput /data/output
The configuration parameters can be specified in the hadoop.env file or as environmental variables for specific services (e.g. namenode, datanode etc.):
CORE_CONF_fs_defaultFS=hdfs://namenode:8020
CORE_CONF corresponds to core-site.xml. fs_defaultFS=hdfs://namenode:8020 will be transformed into:
<property>
<name>fs.defaultFS</name>
<value>hdfs://namenode:8020</value>
</property>
To define dash inside a configuration parameter, use triple underscore, such as YARNCONF_yarn_log**_aggregation**enable=true (yarn-site.xml):
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
The available configurations are:
- /etc/hadoop/core-site.xml CORE_CONF
- /etc/hadoop/hdfs-site.xml HDFS_CONF
- /etc/hadoop/yarn-site.xml YARN_CONF
- /etc/hadoop/httpfs-site.xml HTTPFS_CONF
- /etc/hadoop/kms-site.xml KMS_CONF
- /etc/hadoop/mapred-site.xml MAPRED_CONF
If you need to extend some other configuration file, refer to base/entrypoint.sh bash script.
You need to add the following entries to your hosts file:
/etc/hosts
...
# Docker hadoop
127.0.0.1 namenode datanode
::1 namenode datanode