Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor calibration logs #2074

Merged
merged 10 commits into from
Dec 7, 2023
Merged
1 change: 1 addition & 0 deletions dev_requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ black==22.10
mypy==1.0.0
isort==5.12.0
types-tabulate
mock==5.1.0
Misty-W marked this conversation as resolved.
Show resolved Hide resolved

# Documentation and examples.
Sphinx==5.2.3
Expand Down
227 changes: 110 additions & 117 deletions mitiq/calibration/calibrator.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,24 +4,14 @@
# LICENSE file in the root directory of this source tree.

import warnings
from itertools import product
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Sequence,
Set,
Tuple,
Union,
cast,
)
from enum import auto
Misty-W marked this conversation as resolved.
Show resolved Hide resolved
from operator import itemgetter
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union, cast

import cirq
import numpy as np
import numpy.typing as npt
from strenum import StrEnum
Misty-W marked this conversation as resolved.
Show resolved Hide resolved
from tabulate import tabulate

from mitiq import (
Expand All @@ -33,7 +23,6 @@
)
from mitiq.calibration.settings import (
BenchmarkProblem,
MitigationTechnique,
Settings,
Strategy,
ZNESettings,
Expand All @@ -45,6 +34,11 @@ class MissingResultsError(Exception):
pass


class OutputForm(StrEnum):
Misty-W marked this conversation as resolved.
Show resolved Hide resolved
flat = auto()
cartesian = auto()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just to check my understanding, the reason we need to use StrEnum here as opposed to enum.StrEnum is because enum.StrEnum was added in python 3.11 and we want to make sure this works with python version below that. That right?

Misty-W marked this conversation as resolved.
Show resolved Hide resolved


class ExperimentResults:
"""Class to store calibration experiment data, and provide helper methods
for computing results based on it."""
Expand Down Expand Up @@ -73,118 +67,109 @@ def add_result(
self.noisy[strategy.id, problem.id] = noisy_val
self.ideal[strategy.id, problem.id] = ideal_val

def _get_performance(
@staticmethod
def _performance_str(noisy_error: float, mitigated_error: float) -> str:
"""Get human readable performance representaion."""
return (
f"{'✔' if mitigated_error < noisy_error else '✘'}\n"
f"Noisy error: {round(noisy_error, 4)}\n"
f"Mitigated error: {round(mitigated_error, 4)}\n"
f"Improvement factor: {round(noisy_error / mitigated_error, 4)}"
)

def _get_errors(
self, strategy_id: int, problem_id: int
) -> Tuple[str, float, float]:
"""Get performance symbol and errors.
) -> Tuple[float, float]:
"""Get errors for a given strategy/problem combination.

Returns:
A performance tuple comprising:
- performance symbol either ✔ or ✘ depending
on whether mitigation technique works well or not.
It considered to work well if the mitigated error is less
than the noisy error.
- the absolute value of the noisy error
- the absolute value of the mitigated error
A tuple comprising:
- absolute value of the noisy error
- absolute value of the mitigated error
"""
mitigated = self.mitigated[strategy_id, problem_id]
noisy = self.noisy[strategy_id, problem_id]
ideal = self.ideal[strategy_id, problem_id]
mitigated_error = abs(ideal - mitigated)
noisy_error = abs(ideal - noisy)
mitigation_worked = mitigated_error < noisy_error
performance_symbol = "✔" if mitigation_worked else "✘"
return performance_symbol, noisy_error, mitigated_error

def unique_techniques(self) -> Set[MitigationTechnique]:
"""Returns the unique mitigation techniques used across this
collection of experiment results."""
return set(strategy.technique for strategy in self.strategies)

def _technique_results(
self, technique: MitigationTechnique
) -> Iterator[Tuple[BenchmarkProblem, Strategy, str, float, float]]:
"""Yields the results from this collection of experiment results,
limited to a specific technique."""
for strategy, problem in product(self.strategies, self.problems):
if strategy.technique is technique:
performance_symbol, nerr, merr = self._get_performance(
strategy.id, problem.id
)
yield problem, strategy, performance_symbol, nerr, merr

def log_technique(self, technique: MitigationTechnique) -> str:
"""Creates a table displaying all results of a given mitigation
technique."""
table: List[List[Union[str, float]]] = []
for (
problem,
strategy,
performance_symbol,
noisy_error,
mitigated_error,
) in self._technique_results(technique):
row: List[Union[str, float]] = [
performance_symbol,
problem.type,
technique.name,
]
summary_dict = strategy.to_pretty_dict()
if strategy.technique is MitigationTechnique.ZNE:
row.extend(
[
summary_dict["factory"],
summary_dict["scale_factors"],
summary_dict["scale_method"],
]
)
elif strategy.technique is MitigationTechnique.PEC:
row.extend(
return noisy_error, mitigated_error

def log_results_flat(self) -> None:
"""Prints calibration results in the following form
┌──────────────────────────┬──────────────────────────────┬────────────────────────────┐
│ benchmark │ strategy │ performance │
├──────────────────────────┼──────────────────────────────┼────────────────────────────┤
│ Type: rb │ Technique: ZNE │ ✔ │
│ Num qubits: 2 │ Factory: Richardson │ Noisy error: 0.101 │
│ Circuit depth: 323 │ Scale factors: 1.0, 3.0, 5.0 │ Mitigated error: 0.0294 │
│ Two qubit gate count: 77 │ Scale method: fold_global │ Improvement factor: 3.4398 │
├──────────────────────────┼──────────────────────────────┼────────────────────────────┤
│ Type: rb │ Technique: ZNE │ ✔ │
│ Num qubits: 2 │ Factory: Richardson │ Noisy error: 0.101 │
│ Circuit depth: 323 │ Scale factors: 1.0, 2.0, 3.0 │ Mitigated error: 0.0501 │
│ Two qubit gate count: 77 │ Scale method: fold_global │ Improvement factor: 2.016 │
├──────────────────────────┼──────────────────────────────┼────────────────────────────┤
│ Type: ghz │ Technique: ZNE │ ✔ │
│ Num qubits: 2 │ Factory: Richardson │ Noisy error: 0.0128 │
│ Circuit depth: 2 │ Scale factors: 1.0, 2.0, 3.0 │ Mitigated error: 0.0082 │
│ Two qubit gate count: 1 │ Scale method: fold_global │ Improvement factor: 1.561 │
├──────────────────────────┼──────────────────────────────┼────────────────────────────┤
│ Type: ghz │ Technique: ZNE │ ✘ │
│ Num qubits: 2 │ Factory: Richardson │ Noisy error: 0.0128 │
│ Circuit depth: 2 │ Scale factors: 1.0, 3.0, 5.0 │ Mitigated error: 0.0137 │
│ Two qubit gate count: 1 │ Scale method: fold_global │ Improvement factor: 0.9369 │
└──────────────────────────┴──────────────────────────────┴────────────────────────────┘
""" # noqa: E501
table: List[List[str | float]] = []
Misty-W marked this conversation as resolved.
Show resolved Hide resolved
headers: List[str] = ["benchmark", "strategy", "performance"]
for problem in self.problems:
row_group: List[List[str | float]] = []
Misty-W marked this conversation as resolved.
Show resolved Hide resolved
for strategy in self.strategies:
nerr, merr = self._get_errors(strategy.id, problem.id)
row_group.append(
[
summary_dict["noise_level"],
summary_dict["noise_bias"],
summary_dict["representation_function"],
str(problem),
str(strategy),
self._performance_str(nerr, merr),
# this is only for sorting
# removed after sorting
merr - nerr,
]
)
row.extend([noisy_error, mitigated_error])
row_group.sort(key=itemgetter(-1))
table.extend([r[:-1] for r in row_group])
return print(tabulate(table, headers, tablefmt="simple_grid"))

def log_results_cartesian(self) -> None:
"""Prints calibration results in the following form
┌──────────────────────────────┬────────────────────────────┬────────────────────────────┐
│ strategy\benchmark │ Type: rb │ Type: ghz │
│ │ Num qubits: 2 │ Num qubits: 2 │
│ │ Circuit depth: 337 │ Circuit depth: 2 │
│ │ Two qubit gate count: 80 │ Two qubit gate count: 1 │
├──────────────────────────────┼────────────────────────────┼────────────────────────────┤
│ Technique: ZNE │ ✔ │ ✘ │
│ Factory: Richardson │ Noisy error: 0.1128 │ Noisy error: 0.0117 │
│ Scale factors: 1.0, 2.0, 3.0 │ Mitigated error: 0.0501 │ Mitigated error: 0.0439 │
│ Scale method: fold_global │ Improvement factor: 2.2515 │ Improvement factor: 0.2665 │
├──────────────────────────────┼────────────────────────────┼────────────────────────────┤
│ Technique: ZNE │ ✔ │ ✘ │
│ Factory: Richardson │ Noisy error: 0.1128 │ Noisy error: 0.0117 │
│ Scale factors: 1.0, 3.0, 5.0 │ Mitigated error: 0.0408 │ Mitigated error: 0.0171 │
│ Scale method: fold_global │ Improvement factor: 2.7672 │ Improvement factor: 0.6852 │
└──────────────────────────────┴────────────────────────────┴────────────────────────────┘
""" # noqa: E501
table: List[List[str]] = []
headers: List[str] = ["strategy\\benchmark"]
for problem in self.problems:
headers.append(str(problem))
for strategy in self.strategies:
row: List[str] = [str(strategy)]
for problem in self.problems:
nerr, merr = self._get_errors(strategy.id, problem.id)
row.append(self._performance_str(nerr, merr))
table.append(row)

def _sort_best_perf(row: List[Any]) -> float:
return row[-1] - row[-2]

table.sort(key=_sort_best_perf)

if technique is MitigationTechnique.ZNE:
headers = [
"performance",
"circuit type",
"method",
"extrapolation",
"scale_factors",
"scale method",
]
elif technique is MitigationTechnique.PEC:
headers = [
"performance",
"circuit type",
"method",
"noise level",
"noise bias",
"noise representation",
]

headers.extend(["noisy error", "mitigated error"])

return tabulate(table, headers, tablefmt="simple_grid")

def log_results(self) -> None:
"""Log results from entire calibration run. Logging is performed on
each mitigation technique individually to avoid confusion when many
techniques are used."""
for mitigation_technique in self.unique_techniques():
print(f"{mitigation_technique.name} results:")
print(self.log_technique(mitigation_technique))
print()
return print(tabulate(table, headers, tablefmt="simple_grid"))

def is_missing_data(self) -> bool:
"""Method to check if there is any missing data that was expected from
Expand Down Expand Up @@ -308,7 +293,7 @@ def get_cost(self) -> Dict[str, int]:
"ideal_executions": ideal,
}

def run(self, log: bool = False) -> None:
def run(self, log: Optional[OutputForm] = None) -> None:
"""Runs all the circuits required for calibration."""
if not self.results.is_missing_data():
self.results.reset_data()
Expand Down Expand Up @@ -339,8 +324,16 @@ def run(self, log: bool = False) -> None:

self.results.ensure_full()

if log:
self.results.log_results()
if log is not None:
if log == OutputForm.flat:
self.results.log_results_flat()
elif log == OutputForm.cartesian:
self.results.log_results_cartesian()
else:
raise ValueError(
"log parameter must be one of: "
f"{', '.join(OutputForm._member_names_)}"
)

def best_strategy(self) -> Strategy:
"""Finds the best strategy by using the parameters that had the
Expand Down
16 changes: 16 additions & 0 deletions mitiq/calibration/settings.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,15 @@ def to_dict(self) -> Dict[str, Any]:
def __repr__(self) -> str:
return str(self.to_dict())

def __str__(self) -> str:
result = ""
for key, value in self.to_dict().items():
if key == "ideal_distribution":
continue
title: str = key.replace("_", " ").capitalize()
result += f"{title}: {value}\n"
return result.rstrip()


@dataclass
class Strategy:
Expand Down Expand Up @@ -239,6 +248,13 @@ def to_pretty_dict(self) -> Dict[str, str]:
def __repr__(self) -> str:
return str(self.to_dict())

def __str__(self) -> str:
result = ""
for key, value in self.to_pretty_dict().items():
title: str = key.replace("_", " ").capitalize()
result += f"{title}: {value}\n"
return result.rstrip()

def num_circuits_required(self) -> int:
summary = self.to_dict()
if self.technique is MitigationTechnique.ZNE:
Expand Down
Loading
Loading