This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport".
The repository provides a general framework for point cloud/mesh registration, supporting both optimization- and learning-based registration approaches. It also provides a general framework for deep prediction tasks, e.g. for 3D landmark detection.
Besides, the repository to https://github.com/uncbiag/shapmagn contains our latest development code.
We release a large lung vessel tree dataset PVT1010. For usage, please refer to PVT1010_readme.md.
The PVT1010 dataset includes 1,010 pairs of high resolution inhale/exhale lung vascular trees extracted from 3D computed tomography (CT) images.
10 cases corresponding to the public DirLab-COPD Gene dataset which includes, for each pair, 300 expert annotated landmarks that are in correspondence with each other. These 10 cases are used as test cases.
- Spline registration (supports anisotropic kernel)
- Fluid registration (supports LDDMM)
- Coherent Point Drift
- Robust Optimal Transport (RobOT)
- RobOT Projection (rigid, spline, LDDMM)
- RobOT-based uniform mass sampling
- Third party approaches (Probreg, Open3d, Teaser++)
- Spline registration (supports anisotropic kernel)
- Fluid registration (supports LDDMM)
- Point cloud feature learning (self-supervised)
- End-to-end registration (prealign, spline/LDDMM, postprocessing)
- Landmark Detection
For detailed instructions refer to INSTALL.md.
Set ROBOT_PATH
in global_variable.py to local robot path.
We provide a series of demos, which can be found in the directory robot/demos Here are two examples demonstrating how to run the optimization-based demos :
cd robot/robot/demos
python 2d_toy_reg.py
python ot_fun.py
python toy_reg.py
python partial_prealign_reg.py
python lung_gradient_flow.py
python lung_reg.py
python flyingkitti_reg.py
python ot_sampling.py
Here is a toy example on training deep feature learning on 10 dirlab pairs:
python run_task.py -ds ./demos/data/lung_data/lung_dataset_splits -o ./demos/output/training_feature_learning_on_one_case -tn deepfeature_pointconv_train -ts ./demos/settings/lung/deep_feature_training -g 0
Here is an example on robust optimal transport based deep feature projection (spline) on 10 dirlab pairs:
python run_eval.py -dj ./demos/data/lung_data/lung_dataset_splits/test/pair_data.json -o ./demos/output/test_feature_projection_one_case/deepfeature_pointconv_projection -ts ./demos/settings/lung/deep_feature_projection -g 0
Here is a toy example on training a pretrained deep LDDMM flow network on 10 dirlab pairs:
python run_task.py -ds ./demos/data/lung_data/lung_dataset_splits -o ./demos/output/train_deepflow_on_one_case -tn deepflow_pwc_lddmm -ts ./demos/settings/lung/deep_lddmm_flow -g 0
Here is a example on evaluating a deep LDDMM flow network on 10 dirlab pairs:
python run_eval.py -dj ./demos/data/lung_data/lung_dataset_splits/test/pair_data.json -o ./demos/output/test_deepflow_on_one_case/deepflow_pwc_lddmm -ts ./demos/settings/lung/deep_lddmm_flow -m ./demos/pretrained_models/lung_model/pretrained_deep_lddmm -g 0
We need to prepare the data of KITTI Scene Flow 2015 first. Here we follow the instructions in PointPWC.
Download and unzip KITTI Scene Flow Evaluation 2015 to directory RAW_DATA_PATH
.
Run the following script for KITTI data preprocessing; the processed data will be saved in PROCESSED_DATA_PATH
; a robot compatible format is saved in SHAPMAN_INTPUT_PATH
:
cd robot/experiments/datasets/flying3d_and_kitti/flyingkitti_nonocc
python process_kitti_raw_data.py RAW_DATA_PATH PROCESSED_DATA_PATH
python prepare_data_test_on_kitti.py RAW_DATA_PATH PROCESSED_DATA_PATH SHAPMAN_INTPUT_PATH
Here is an example on evaluating a spline flow network on 142 Kitti pairs:
python run_eval.py -dj SHAPMAN_INTPUT_PATH/pair_data.json -o ./demos/output/test_deepflow_on_kitti/deep_spline -ts ./demos/settings/kitti/deep_spline_flow -m ./demos/pretrained_models/kitti_model/pretrained_deep_spline -g 0
Here is an example on evaluating a displacement network (PWC) that combines OT prealignement and OT postprocessing on 142 Kitti pairs:
python run_eval.py -dj SHAPMAN_INTPUT_PATH/pair_data.json -o ./demos/output/test_deepflow_on_kitti/deep_pwc -ts ./demos/settings/kitti/official_released_pwc_model_with_ot_prealigned_and_post -m ./demos/pretrained_models/kitti_model/PointConv_726_0.0463.pth -g 0
Here are some examples on supported functions:
Robust Optimal Transport (RobOT):
RobOT Projection (Partial Rigid Registration):
RobOT Projection (Spline, LDDMM):
Lung vessel Registration (60,000 points):
Self-supervised Feature Learning (60,000 points):
Synthesized Data Pair Generation:
Facial Landmark Detection (160,000 points):