Skip to content

A curated list of awesome work on VAEs, disentanglement, representation learning, and generative models.

Notifications You must be signed in to change notification settings

un-lock-me/Awesome-VAEs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 

Repository files navigation

Awesome-VAEs

Awesome work on the VAE, disentanglement, representation learning, and generative models.

I gathered these resources (currently @ 369 papers) as literature for my PhD, and thought it may come in useful for others. This list includes works relevant to various topics relating to VAEs. Sometimes this spills over to topics e.g. adversarial training and GANs, general disentanglement, variational inference, flow-based models and auto-regressive models. Always keen to expand the list. I have also included an excel file which includes notes on each paper, as well as a breakdown of the topics covered in each paper.

They are ordered by year (new to old). I provide a link to the paper as well as to the github repo where available.

2019

Don't blame the ELBO! A linear VAE perspective on posterior collapse. Lucas, Tucker, Grosse, Norouzi https://128.84.21.199/pdf/1911.02469.pdf

Bridging the ELBO and MMD. Ucar https://arxiv.org/pdf/1910.13181.pdf

Learning disentangled representations for counterfactual regression. Hassanpour, Greiner https://pdfs.semanticscholar.org/1df4/204e14da51b05a14781e2a4dc3e0d7da562d.pdf

Learning disentangled representations for recommendation. Ma, Zhou, Cui, Yang, Zhu https://arxiv.org/pdf/1910.14238.pdf

A vector quantized variational autoencoder (VQ-VAE) autoregressive neural F0 model for statistical parametric speech synthesis. Wang, Takaki, Yamagishi, King, Tokuda https://ieeexplore.ieee.org/abstract/document/8884734

Diversity-aware event prediction based on a conditional variational autoencoder with reconstruction. Kiyomaru, Omura, Murawaki, Kawahara, Kurohashi https://www.aclweb.org/anthology/D19-6014.pdf

Learning multimodal representations with factorized deep generative models. Tsai, Liang, Zadeh, Morency, Salakhutdinov https://pdfs.semanticscholar.org/7416/6384ad391513e8e8bf48cbeaff2516b8c332.pdf

High-dimensional nonlinear profile monitoring based on deep probabilistic autoencoders. Sergin, Yan https://arxiv.org/pdf/1911.00482.pdf

Leveraging directed causal discovery to detect latent common causes. Lee, Hart, Richens, Johri https://arxiv.org/pdf/1910.10174.pdf

Robust discrimination and generation of faces using compact, disentangled embeddings. Browatzki, Wallraven http://openaccess.thecvf.com/content_ICCVW_2019/papers/RSL-CV/Browatzki_Robust_Discrimination_and_Generation_of_Faces_using_Compact_Disentangled_Embeddings_ICCVW_2019_paper.pdf

Coulomb Autoencoders. Sansone, Ali, Sun https://arxiv.org/pdf/1802.03505.pdf

Contrastive learning of structured world models. Kipf, Pol, Welling https://arxiv.org/pdf/1911.12247.pdf

No representation without transformation. Giannone, Masci, Osendorfer https://pgr-workshop.github.io/img/PGR007.pdf

Neural density estimation. Papamakarios https://arxiv.org/pdf/1910.13233.pdf

Variational autoencoder-based approach for rail defect identification. Wei, Ni http://www.dpi-proceedings.com/index.php/shm2019/article/view/32432

Variational learning with disentanglement-pytorch. Abdi, Abolmaesumi, Fels https://openreview.net/pdf?id=rJgUsFYnir

PVAE: learning disentangled representations with intrinsic dimension via approximated L0 regularization. Shi, Glocker, Castro https://openreview.net/pdf?id=HJg8stY2oB

Mixed-curvature variational autoencoders. Skopek, Ganea, Becigneul https://arxiv.org/pdf/1911.08411.pdf

Continuous hierarchical representations with poincare variational autoencoders. Mathieu, Le Lan, Maddison, Tomioka https://arxiv.org/pdf/1901.06033.pdf

VIREL: A variational inference framework for reinforcement learning. Fellows, Mahajan, Rudner, Whiteson https://arxiv.org/pdf/1811.01132.pdf

Disentangling video with independent prediction. Whitney, Fergus https://arxiv.org/pdf/1901.05590.pdf

Disentangling state space representations Miladinovic, Gondal, Scholkopf, Buhmann, Bauer https://arxiv.org/pdf/1906.03255.pdf

Likelihood conribution based multi-scale architecture for generative flows. Das, Abbeel, Spanos https://arxiv.org/pdf/1908.01686.pdf

AlignFlow: cycle consistent learning from multiple domains via normalizing flows Grover, Chute, Shu, Cao, Ermon https://arxiv.org/pdf/1905.12892.pdf

IB-GAN: disentangled representation learning with information bottleneck GAN. Jeon, Lee, Kim https://openreview.net/forum?id=ryljV2A5KX

Learning hierarchical priors in VAEs. Klushyn, Chen, Kurle, Cseke, van der Smagt https://papers.nips.cc/paper/8553-learning-hierarchical-priors-in-vaes.pdf

ODE2VAE: Deep generative second order ODEs with Bayesian neural networks. Yildiz, Heinonen, Lahdesmaki https://papers.nips.cc/paper/9497-ode2vae-deep-generative-second-order-odes-with-bayesian-neural-networks.pdf

Explicitly disentangling image content from translation and rotation with spatial-VAE. Bepler, Zhong, Kelley, Brignole, Berger https://papers.nips.cc/paper/9677-explicitly-disentangling-image-content-from-translation-and-rotation-with-spatial-vae.pdf

A primal-dual link between GANs and autoencoders. Husain, Nock, Williamson https://papers.nips.cc/paper/8333-a-primal-dual-link-between-gans-and-autoencoders.pdf

Exact rate-distortion in autoencoders via echo noise. Brekelmans, Moyer, Galstyan, ver Steeg https://papers.nips.cc/paper/8644-exact-rate-distortion-in-autoencoders-via-echo-noise.pdf

Direct optimization through arg max for discrete variational auto-encoder. Lorberbom, Jaakkola, Gane, Hazan https://papers.nips.cc/paper/8851-direct-optimization-through-arg-max-for-discrete-variational-auto-encoder.pdf

Semi-implicit graph variational auto-encoders. Hasanzadeh, Hajiramezanali, Narayanan, Duffield, Zhou, Qian https://papers.nips.cc/paper/9255-semi-implicit-graph-variational-auto-encoders.pdf

The continuous Bernoulli: fixing a pervasive error in variational autoencoders. Loaiza-Ganem, Cunningham https://papers.nips.cc/paper/9484-the-continuous-bernoulli-fixing-a-pervasive-error-in-variational-autoencoders.pdf

Provable gradient variance guarantees for black-box variational inference. Domke https://papers.nips.cc/paper/8325-provable-gradient-variance-guarantees-for-black-box-variational-inference.pdf

Conditional structure generation through graph variational generative adversarial nets. Yang, Zhuang, Shi, Luu, Li https://papers.nips.cc/paper/8415-conditional-structure-generation-through-graph-variational-generative-adversarial-nets.pdf

Scalable spike source localization in extracellular recordings using amortized variational inference. Hurwitz, Xu, Srivastava, Buccino, Hennig https://papers.nips.cc/paper/8720-scalable-spike-source-localization-in-extracellular-recordings-using-amortized-variational-inference.pdf

A latent variational framework for stochastic optimization. Casgrain https://papers.nips.cc/paper/8802-a-latent-variational-framework-for-stochastic-optimization.pdf

MAVEN: multi-agent variational exploration. Mahajan, Rashid, Samvelyan, Whiteson https://papers.nips.cc/paper/8978-maven-multi-agent-variational-exploration.pdf

Variational graph recurrent neural networks. Hajiramezanali, Hasanzadeh, Narayanan, Duffield, Zhou, Qian https://papers.nips.cc/paper/9254-variational-graph-recurrent-neural-networks.pdf

The thermodynamic variational objective. Masrani, Le, Wood https://papers.nips.cc/paper/9328-the-thermodynamic-variational-objective.pdf

Variational temporal abstraction. Kim, Ahn, Bengio https://papers.nips.cc/paper/9332-variational-temporal-abstraction.pdf

Exploiting video sequences for unsupervised disentangling in generative adversarial networks. Tuesca, Uzal https://arxiv.org/pdf/1910.11104.pdf

Couple-VAE: mitigating the encoder-decoder incompatibility in variational text modeling with coupled deterministic networks. https://openreview.net/pdf?id=SJlo_TVKwS

Variational mixture-of-experts autoencoders for multi-modal deep generative models. Shi, Siddharth, Paige, Torr https://papers.nips.cc/paper/9702-variational-mixture-of-experts-autoencoders-for-multi-modal-deep-generative-models.pdf

Invertible convolutional flow. Karami, Schuurmans, Sohl-Dickstein, Dinh, Duckworth https://papers.nips.cc/paper/8801-invertible-convolutional-flow.pdf

Implicit posterior variational inference for deep Gaussian processes. Yu, Chen, Dai, Low, Jaillet https://papers.nips.cc/paper/9593-implicit-posterior-variational-inference-for-deep-gaussian-processes.pdf

MaCow: Masked convolutional generative flow. Ma, Kong, Zhang, Hovy https://papers.nips.cc/paper/8824-macow-masked-convolutional-generative-flow.pdf

Residual flows for invertible generative modeling. Chen, Behrmann, Duvenaud, Jacobsen https://papers.nips.cc/paper/9183-residual-flows-for-invertible-generative-modeling.pdf

Discrete flows: invertible generative models of discrete data. Tran, Vafa, Agrawal, Dinh, Poole https://papers.nips.cc/paper/9612-discrete-flows-invertible-generative-models-of-discrete-data.pdf

Re-examination of the role of latent variables in sequence modeling. Lai, Dai, Yang, Yoo https://papers.nips.cc/paper/8996-re-examination-of-the-role-of-latent-variables-in-sequence-modeling.pdf

Learning-in-the-loop optimization: end-to-end control and co-design of soft robots through learned deep latent representations. Spielbergs, Zhao, Hu, Du, Matusik, Rus https://papers.nips.cc/paper/9038-learning-in-the-loop-optimization-end-to-end-control-and-co-design-of-soft-robots-through-learned-deep-latent-representations.pdf

Triad constraints for learning causal structure of latent variables. Cai, Xie, Glymour, Hao, Zhang https://papers.nips.cc/paper/9448-triad-constraints-for-learning-causal-structure-of-latent-variables.pdf

Disentangling influence: using disentangled representations to audit model predictions. Marx, Phillips, Friedler, Scheidegger, Venkatasubramanian https://papers.nips.cc/paper/8699-disentangling-influence-using-disentangled-representations-to-audit-model-predictions.pdf

Symmetry-based disentangled representation learning requires interaction with environments. Caselles-Dupre, Ortiz, Filliat https://papers.nips.cc/paper/8709-symmetry-based-disentangled-representation-learning-requires-interaction-with-environments.pdf

Weakly supervised disentanglement with guarantees. Shu, Chen, Kumar, Ermon, Poole https://arxiv.org/pdf/1910.09772.pdf

Demystifying inter-class disentanglement. Gabbay, Hoshen https://arxiv.org/pdf/1906.11796.pdf

Spectral regularization for combating mode collapse in GANs. Liu, Tang, Xie, Qiu https://arxiv.org/pdf/1908.10999.pdf

Geometric disentanglement for generative latent shape models. Aumentado-Armstrong, Tsogkas, Jepson, Dickinson https://arxiv.org/pdf/1908.06386.pdf

Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. Li, Lin, Lin, Wang https://arxiv.org/pdf/1909.09675.pdf

Identity from here, pose from there: self-supervised disentanglement and generation of objects using unlabeled videos. Xiao, Liu, Lee https://web.cs.ucdavis.edu/~yjlee/projects/iccv2019_disentangle.pdf

Content and style disentanglement for artistic style transfer. Kotovenko, Sanakoyeu, Lang, Ommer https://compvis.github.io/content-style-disentangled-ST/paper.pdf

Unsupervised robust disentangling of latent characteristics for image synthesis. Esser, Haux, Ommer https://arxiv.org/pdf/1910.10223.pdf

LADN: local adversarial disentangling network for facial makeup and de-makeup. Gu, Wang, Chiu, Tai, Tang https://arxiv.org/pdf/1904.11272.pdf

Video compression with rate-distortion autoencoders. Habibian, van Rozendaal, Tomczak, Cohen https://arxiv.org/pdf/1908.05717.pdf

Variable rate deep image compression with a conditional autoencoder. Choi, El-Khamy, Lee https://arxiv.org/pdf/1909.04802.pdf

Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. Gong, Liu, Le, Saha https://arxiv.org/pdf/1904.02639.pdf

AVT: unsupervise d learning of transformation equivariant representations by autoencoding variational transformations. Qi, Zhang, Chen, Tian https://arxiv.org/pdf/1903.10863.pdf

Deep clustering by Gaussian mixture variational autoencoders with graph embedding. Yang, Cheung, Li, Fang http://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_Deep_Clustering_by_Gaussian_Mixture_Variational_Autoencoders_With_Graph_Embedding_ICCV_2019_paper.pdf

Variational adversarial active learning. Sinha, Ebrahimi, Darrell https://arxiv.org/pdf/1904.00370.pdf

Variational few-shot learning. Zhang, Zhao, Ni, Xu, Yang http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhang_Variational_Few-Shot_Learning_ICCV_2019_paper.pdf

Multi-angle point cloud-VAE: unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. Han, Wang, Liu, Zwicker https://arxiv.org/pdf/1907.12704.pdf

LayoutVAE: stochastic scene layout generation from a label set. Jyothi, Durand, He, Sigal, Mori https://arxiv.org/pdf/1907.10719.pdf

VV-NET: Voxel VAE Net with group convolutions for point cloud segmentation. Meng, Gao, Lai, Manocha https://arxiv.org/pdf/1811.04337.pdf

Bayes-Factor-VAE: hierarchical bayesian deep auto-encoder models for factor disentanglement. Kim, Wang, Sahu, Pavlovic https://arxiv.org/pdf/1909.02820.pdf

Robust ordinal VAE: Employing noisy pairwise comparisons for disentanglement. Chen, Batmanghelich https://arxiv.org/pdf/1910.05898.pdf

Evaluating disentangled representations. Sepliarskaia, A. and Kiseleva, J. and de Rijke, M. https://arxiv.org/pdf/1910.05587.pdf

A stable variational autoencoder for text modelling. Li, R. and Li, X. and Lin, C. and Collinson, M. and Mao, R. https://abdn.pure.elsevier.com/en/publications/a-stable-variational-autoencoder-for-text-modelling

Hamiltonian generative networks. Toth, Rezende, Jaegle, Racaniere, Botev, Higgins https://128.84.21.199/pdf/1909.13789.pdf

LAVAE: Disentangling location and appearance. Dittadi, Winther https://arxiv.org/pdf/1909.11813.pdf

Interpretable models in probabilistic machine learning. Kim https://ora.ox.ac.uk/objects/uuid:b238ed7d-7155-4860-960e-6227c7d688fb/download_file?file_format=pdf&safe_filename=PhD_Thesis_of_University_of_Oxford.pdf&type_of_work=Thesis

Disentangling speech and non-speech components for building robust acoustic models from found data. Gurunath, Rallabandi, Black https://arxiv.org/pdf/1909.11727.pdf

Joint separation, dereverberation and classification of multiple sources using multichannel variational autoencoder with auxiliary classifier. Inoue, Kameoka, Li, Makino http://pub.dega-akustik.de/ICA2019/data/articles/000906.pdf

SuperVAE: Superpixelwise variational autoencoder for salient object detection. Li, Sun, Guo https://www.aaai.org/ojs/index.php/AAAI/article/view/4876

Implicit discriminator in variational autoencoder. Munjal, Paul, Krishnan https://arxiv.org/pdf/1909.13062.pdf

TransGaGa: Geometry-aware unsupervised image-to-image translation. Wu, Cao, Li, Qian, Loy http://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_TransGaGa_Geometry-Aware_Unsupervised_Image-To-Image_Translation_CVPR_2019_paper.pdf

Variational attention using articulatory priors for generating code mixed speech using monolingual corpora. Rallabandi, Black. https://www.isca-speech.org/archive/Interspeech_2019/pdfs/1103.pdf

One-class collaborative filtering with the queryable variational autoencoder. Wu, Bouadjenek, Sanner. https://people.eng.unimelb.edu.au/mbouadjenek/papers/SIGIR_Short_2019.pdf

Predictive auxiliary variational autoencoder for representation learning of global speech characteristics. Springenberg, Lakomkin, Weber, Wermter. https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2845.pdf

Data augmentation using variational autoencoder for embedding based speaker verification. Wu, Wang, Qian, Yu https://zhanghaowu.me/assets/VAE_Data_Augmentation_proceeding.pdf

One-shot voice conversion with disentangled representations by leveraging phonetic posteriograms. Mohammadi, Kim. https://www.isca-speech.org/archive/Interspeech_2019/pdfs/1798.pdf

EEG-based adaptive driver-vehicle interface using variational autoencoder and PI-TSVM. Bi, Zhang, Lian https://www.researchgate.net/profile/Luzheng_Bi2/publication/335619300_EEG-Based_Adaptive_Driver-Vehicle_Interface_Using_Variational_Autoencoder_and_PI-TSVM/links/5d70bb234585151ee49e5a30/EEG-Based-Adaptive-Driver-Vehicle-Interface-Using-Variational-Autoencoder-and-PI-TSVM.pdf

Neural gaussian copula for variational autoencoder Wang, Wang https://arxiv.org/pdf/1909.03569.pdf

Enhancing VAEs for collaborative filtering: Flexible priors and gating mechanisms. Kim, Suh http://delivery.acm.org/10.1145/3350000/3347015/p403-kim.pdf?ip=86.162.136.199&id=3347015&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1568726810_89cfa7cbc7c1b0663405d4446f9fce85

Riemannian normalizing flow on variational wasserstein autoencoder for text modeling. Wang, Wang https://arxiv.org/pdf/1904.02399.pdf

Disentanglement with hyperspherical latent spaces using diffusion variational autoencoders. Rey https://openreview.net/pdf?id=SylFDSU6Sr

Learning deep representations by mutual information estimation and maximization. Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bachman, Trischler, Bengio https://arxiv.org/pdf/1808.06670.pdf https://github.com/rdevon/DIM

Novel tracking approach based on fully-unsupervised disentanglement of the geometrical factors of variation. Vladymyrov, Ariga https://arxiv.org/pdf/1909.04427.pdf

Real time trajectory prediction using conditional generative models. Gomez-Gonzalez, Prokudin, Scholkopf, Peters https://arxiv.org/pdf/1909.03895.pdf

Disentanglement challenge: from regularization to reconstruction. Qiao, Li, Cai https://openreview.net/pdf?id=ByecPrUaHH

Improved disentanglement through aggregated convolutional feature maps. Seitzer https://openreview.net/pdf?id=ryxOvH86SH

Linked variational autoencoders for inferring substitutable and supplementary items. Rakesh, Wang, Shu http://www.public.asu.edu/~skai2/files/wsdm_2019_lvae.pdf

On the fairness of disentangled representations. Locatello, Abbati, Rainforth, Bauer, Scholkopf, Bachem https://arxiv.org/pdf/1905.13662.pdf

Learning robust representations by projecting superficial statistics out. Wang, He, Lipton, Xing https://openreview.net/pdf?id=rJEjjoR9K7

Understanding posterior collapse in generative latent variable models. Lucas, Tucker, Grosse, Norouzi https://openreview.net/pdf?id=r1xaVLUYuE

On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset. Gondal, Wuthrich, Miladinovic, Locatello, Breidt, Volchkv, Akpo, Bachem, Scholkopf, Bauer https://arxiv.org/pdf/1906.03292.pdf https://github.com/rr-learning/disentanglement_dataset

DIVA: domain invariant variational autoencoder. Ilse, Tomczak, Louizos, Welling https://arxiv.org/pdf/1905.10427.pdf https://github.com/AMLab-Amsterdam/DIVA

Comment: Variational Autoencoders as empirical Bayes. Wang, Miller, Blei http://www.stat.columbia.edu/~yixinwang/papers/WangMillerBlei2019.pdf

Fast MVAE: joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier. Li, Kameoka, Makino https://ieeexplore.ieee.org/abstract/document/8682623

Reweighted expectation maximization. Dieng, Paisley https://arxiv.org/pdf/1906.05850.pdf https://github.com/adjidieng/REM

Semisupervised text classification by variational autoencoder. Xu, Tan https://ieeexplore.ieee.org/abstract/document/8672806

Learning deep latent-variable MRFs with amortized Bethe free-energy minimization. Wiseman https://openreview.net/pdf?id=ByeMHULt_N

Contrastive variational autoencoder enhances salient features. Abid, Zou https://arxiv.org/pdf/1902.04601.pdf https://github.com/abidlabs/contrastive_vae

Learning latent superstructures in variational autoencoders for deep multidimensional clustering. Li, Chen, Poon, Zhang https://openreview.net/pdf?id=SJgNwi09Km

Tighter variational bounds are not necessarily better. Rainforth, Kosiorek, Le, Maddison, Igl, Wood, The https://arxiv.org/pdf/1802.04537.pdf https://github.com/lxuechen/DReG-PyTorch

ISA-VAE: Independent subspace analysis with variational autoencoders. Anon. https://openreview.net/pdf?id=rJl_NhR9K7

Manifold mixup: better representations by interpolating hidden states. Verma, Lamb, Beckham, Najafi, Mitliagkas, Courville, Lopez-Paz, Bengio. https://arxiv.org/pdf/1806.05236.pdf https://github.com/vikasverma1077/manifold_mixup

Bit-swap: recursive bits-back coding for lossless compression with hierarchical latent variables. Kingma, Abbeel, Ho. http://proceedings.mlr.press/v97/kingma19a/kingma19a.pdf https://github.com/fhkingma/bitswap

Practical lossless compression with latent variables using bits back coding. Townsend, Bird, Barber. https://arxiv.org/pdf/1901.04866.pdf https://github.com/bits-back/bits-back

BIVA: a very deep hierarchy of latent variables for generative modeling. Maaloe, Fraccaro, Lievin, Winther. https://arxiv.org/pdf/1902.02102.pdf

Flow++: improving flow-based generative models with variational dequantization and architecture design. Ho, Chen, Srinivas, Duan, Abbeel. https://arxiv.org/pdf/1902.00275.pdf https://github.com/aravindsrinivas/flowpp

Sylvester normalizing flows for variational inference. van den Berg, Hasenclever, Tomczak, Welling. https://arxiv.org/pdf/1803.05649.pdf https://github.com/riannevdberg/sylvester-flows

Unbiased implicit variational inference. Titsias, Ruiz. https://arxiv.org/pdf/1808.02078.pdf

Robustly disentangled causal mechanisms: validating deep representations for interventional robustness. Suter, Miladinovic, Scholkopf, Bauer. https://arxiv.org/pdf/1811.00007.pdf

Tutorial: Deriving the standard variational autoencoder (VAE) loss function. Odaibo https://arxiv.org/pdf/1907.08956.pdf

Learning disentangled representations with reference-based variational autoencoders. Ruiz, Martinez, Binefa, Verbeek. https://arxiv.org/pdf/1901.08534

Disentangling factors of variation using few labels. Locatello, Tschannen, Bauer, Ratsch, Scholkopf, Bachem https://arxiv.org/pdf/1905.01258.pdf

Disentangling disentanglement in variational autoencoders Mathieu, Rainforth, Siddharth, The, https://arxiv.org/pdf/1812.02833.pdf https://github.com/iffsid/disentangling-disentanglement

LIA: latently invertible autoencoder with adversarial learning Zhu, Zhao, Zhang https://arxiv.org/pdf/1906.08090.pdf

Emerging disentanglement in auto-encoder based unsupervised image content transfer. Press, Galanti, Benaim, Wolf https://openreview.net/pdf?id=BylE1205Fm https://github.com/oripress/ContentDisentanglement

MAE: Mutual posterior-divergence regularization for variational autoencoders Ma, Zhou, Hovy https://arxiv.org/pdf/1901.01498.pdf https://github.com/XuezheMax/mae

Overcoming the disentanglement vs reconstruction trade-off via Jacobian supervision. Lezama https://openreview.net/pdf?id=Hkg4W2AcFm https://github.com/jlezama/disentangling-jacobian https://github.com/jlezama/disentangling-jacobian/tree/master/unsupervised_disentangling

Challenging common assumptions in the unsupervised learning of disentangled representations. Locatello, Bauer, Lucic, Ratsch, Gelly, Scholkopf, Bachem https://arxiv.org/abs/1811.12359 https://github.com/google-research/disentanglement_lib/blob/master/README.md

Variational prototyping encoder: one shot learning with prototypical images. Kim, Oh, Lee, Pan, Kweon http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Variational_Prototyping-Encoder_One-Shot_Learning_With_Prototypical_Images_CVPR_2019_paper.pdf

Diagnosing and enchanving VAE models (conf and journal paper both available). Dai, Wipf https://arxiv.org/pdf/1903.05789.pdf https://github.com/daib13/TwoStageVAE

Disentangling latent hands for image synthesis and pose estimation. Yang, Yao http://openaccess.thecvf.com/content_CVPR_2019/papers/Yang_Disentangling_Latent_Hands_for_Image_Synthesis_and_Pose_Estimation_CVPR_2019_paper.pdf

Rare event detection using disentangled representation learning. Hamaguchi, Sakurada, Nakamura http://openaccess.thecvf.com/content_CVPR_2019/papers/Hamaguchi_Rare_Event_Detection_Using_Disentangled_Representation_Learning_CVPR_2019_paper.pdf

Disentangling latent space for VAE by label relevant/irrelvant dimensions. Zheng, Sun https://arxiv.org/pdf/1812.09502.pdf https://github.com/ZhilZheng/Lr-LiVAE

Variational autoencoders pursue PCA directions (by accident). Rolinek, Zietlow, Martius https://arxiv.org/pdf/1812.06775.pdf

Disentangled Representation learning for 3D face shape. Jiang, Wu, Chen, Zhang https://arxiv.org/pdf/1902.09887.pdf https://github.com/zihangJiang/DR-Learning-for-3D-Face

Preventing posterior collapse with delta-VAEs. Razavi, van den Oord, Poole, Vinyals https://arxiv.org/pdf/1901.03416.pdf https://github.com/mattjj/svae

Gait recognition via disentangled representation learning. Zhang, Tran, Yin, Atoum, Liu, Wan, Wang https://arxiv.org/pdf/1904.04925.pdf

Hierarchical disentanglement of discriminative latent features for zero-shot learning. Tong, Wang, Klinkigt, Kobayashi, Nonaka http://openaccess.thecvf.com/content_CVPR_2019/papers/Tong_Hierarchical_Disentanglement_of_Discriminative_Latent_Features_for_Zero-Shot_Learning_CVPR_2019_paper.pdf

Generalized zero- and few-shot learning via aligned variational autoencoders. Schonfeld, Ebrahimi, Sinha, Darrell, Akata https://arxiv.org/pdf/1812.01784.pdf https://github.com/chichilicious/Generalized-Zero-Shot-Learning-via-Aligned-Variational-Autoencoders

Unsupervised part-based disentangling of object shape and appearance. Lorenz, Bereska, Milbich, Ommer https://arxiv.org/pdf/1903.06946.pdf

A semi-supervised Deep generative model for human body analysis. de Bem, Ghosh, Ajanthan, Miksik, Siddaharth, Torr http://www.robots.ox.ac.uk/~tvg/publications/2018/W21P20.pdf

Multi-object representation learning with iterative variational inference. Greff, Kaufman, Kabra, Watters, Burgess, Zoran, Matthey, Botvinick, Lerchner https://arxiv.org/pdf/1903.00450.pdf https://github.com/MichaelKevinKelly/IODINE

Generating diverse high-fidelity images with VQ-VAE-2. Razavi, van den Oord, Vinyals https://arxiv.org/pdf/1906.00446.pdf https://github.com/deepmind/sonnet/blob/master/sonnet/examples/vqvae_example.ipynb https://github.com/rosinality/vq-vae-2-pytorch

MONet: unsupervised scene decomposition and representation. Burgess, Matthey, Watters, Kabra, Higgins, Botvinick, Lerchner https://arxiv.org/pdf/1901.11390.pdf

Structured disentangled representations and Hierarchical disentangled representations. Esmaeili, Wu, Jain, Bozkurt, Siddarth, Paige, Brooks, Dy, van de Meent https://arxiv.org/pdf/1804.02086.pdf

Spatial Broadcast Decoder: A simple architecture for learning disentangled representations in VAEs. Watters, Matthey, Burgess, Lerchner https://arxiv.org/pdf/1901.07017.pdf https://github.com/lukaszbinden/spatial-broadcast-decoder

Resampled priors for variational autoencoders. Bauer, Mnih https://arxiv.org/pdf/1802.06847.pdf

Weakly supervised disentanglement by pairwise similiarities. Chen, Batmanghelich https://arxiv.org/pdf/1906.01044.pdf

Deep variational information bottleneck. Aelmi, Fischer, Dillon, Murphy https://arxiv.org/pdf/1612.00410.pdf https://github.com/alexalemi/vib_demo

Generalized variational inference. Knoblauch, Jewson, Damoulas https://arxiv.org/pdf/1904.02063.pdf

Variational autoencoders and nonlinear ICA: a unifying framework. Khemakhem, Kingma https://arxiv.org/pdf/1907.04809.pdf

Lagging inference networks and posterior collapse in variational autoencoders. He, Spokoyny, Neubig, Berg-Kirkpatrick https://arxiv.org/pdf/1901.05534.pdf https://github.com/jxhe/vae-lagging-encoder

Avoiding latent variable collapse with generative skip models. Dieng, Kim, Rush, Blei https://arxiv.org/pdf/1807.04863.pdf

Distribution Matching in Variational inference. Rosca, Lakshminarayana, Mohamed https://arxiv.org/pdf/1802.06847.pdf A variational auto-encoder model for stochastic point process. Mehrasa, Jyothi, Durand, He, Sigal, Mori https://arxiv.org/pdf/1904.03273.pdf

Sliced-Wasserstein auto-encoders. Kolouri, Pope, Martin, Rohde https://openreview.net/pdf?id=H1xaJn05FQ https://github.com/skolouri/swae

A deep generative model for graph layout. Kwon, Ma https://arxiv.org/pdf/1904.12225.pdf

Differentiable perturb-and-parse semi-supervised parsing with a structured variational autoencoder. Corro, Titov https://openreview.net/pdf?id=BJlgNh0qKQ https://github.com/FilippoC/diffdp

Variational autoencoders with jointly optimized latent dependency structure. He, Gong, Marino, Mori, Lehrmann https://openreview.net/pdf?id=SJgsCjCqt7 https://github.com/ys1998/vae-latent-structure

Unsupervised learning of spatiotemporally coherent metrics Goroshin, Bruna, Tompson, Eigen, LeCun https://arxiv.org/pdf/1412.6056.pdf

Temporal difference variational auto-encoder. Gregor, Papamakarios, Besse, Buesing, Weber https://arxiv.org/pdf/1806.03107.pdf https://github.com/xqding/TD-VAE

Representation learning with contrastive predictive coding. van den Oord, Li, Vinyals https://arxiv.org/pdf/1807.03748.pdf https://github.com/davidtellez/contrastive-predictive-coding

Representation disentanglement for multi-task learning with application to fetal ultrasound Meng, Pawlowski, Rueckert, Kainz https://arxiv.org/pdf/1908.07885.pdf

M$2$VAE - derivation of a multi-modal variational autoencoder objective from the marginal joint log-likelihood. Korthals https://arxiv.org/pdf/1903.07303.pdf

Predicting visual memory schemas with variational autoencoders. Kyle-Davidson, Bors, Evans https://arxiv.org/pdf/1907.08514.pdf

T-CVAE: Transformer -based conditioned variational autoencoder for story completion. Wang, Wan https://www.ijcai.org/proceedings/2019/0727.pdf https://github.com/sodawater/T-CVAE

PuVAE: A variational autoencoder to purify adversarial examples. Hwang, Park, Jang, Yoon, Cho https://arxiv.org/pdf/1903.00585.pdf

Coupled VAE: Improved accuracy and robustness of a variational autoencoder. Cao, Li, Nelson https://arxiv.org/pdf/1906.00536.pdf

D-VAE: A variational autoencoder for directed acyclic graphs. Zhang, Jiang, Cui, Garnett, Chen https://arxiv.org/abs/1904.11088 https://github.com/muhanzhang/D-VAE

Are disentangled representations helpful for abstract reasoning? van Steenkiste, Locatello, Schmidhuber, Bachem https://arxiv.org/pdf/1905.12506.pdf

A heuristic for unsupervised model selection for variational disentangled representation learning. Duan, Watters, Matthey, Burgess, Lerchner, Higgins https://arxiv.org/pdf/1905.12614.pdf

Dual space learning with variational autoencoders. Okamoto, Suzuki, Higuchi, Ohsawa, Matsuo https://pdfs.semanticscholar.org/ea70/6495d4a6214b3d6174bb7fd99c5a9c34c2e6.pdf

Variational autoencoders for sparse and overdispersed discrete data. Zhao, Rai, Du, Buntine https://arxiv.org/pdf/1905.00616.pdf

Variational auto-decoder. Zadeh, Lim, Liang, Morency. https://arxiv.org/pdf/1903.00840.pdf

Causal discovery with attention-based convolutional neural networks. Naura, Bucur, Seifert https://www.mdpi.com/2504-4990/1/1/19/pdf

Variational laplace autoencoders. Park, Kim, Kim http://proceedings.mlr.press/v97/park19a/park19a.pdf

Variational autoencoders with normalizing flow decoders. https://openreview.net/forum?id=r1eh30NFwB

Gaussian process priors for view-aware inference. Hou, Heljakka, Solin https://arxiv.org/pdf/1912.03249.pdf

2018

Normalizing Flows Tutorial, Part 2: Modern Normalizing Flows. Eric Jang https://blog.evjang.com/2018/01/nf2.html

Neural autoregressive flows. Huang, Krueger, Lacoste, Courville https://medium.com/element-ai-research-lab/neural-autoregressive-flows-f164d6b8e462 https://arxiv.org/pdf/1804.00779.pdf https://github.com/CW-Huang/NAF

Gaussian process prior variational autoencoders. Casale, Dalca, Sagletti, Listgarten, Fusi https://papers.nips.cc/paper/8238-gaussian-process-prior-variational-autoencoders.pdf

ACVAE-VC: non-parallel many-to-many voice conversion with auxiliary classifier variational autoencoder. Kameoka, Kaneko, Tanaka, Hojo https://arxiv.org/pdf/1808.05092.pdf

Discovering interpretable representations for both deep generative and discriminative models. Adel, Ghahramani, Weller http://mlg.eng.cam.ac.uk/adrian/ICML18-Discovering.pdf

Autoregressive quantile networks for generative modelling . Ostrovski, Dabey, Munos https://arxiv.org/pdf/1806.05575.pdf

Probabilistic video generation using holistic attribute control. He, Lehrmann, Marino, Mori, Sigal https://arxiv.org/pdf/1803.08085.pdf

Bias and generalization in deep generative models: an empirical study. Zhao, Ren, Yuan, Song, Goodman, Ermon https://arxiv.org/pdf/1811.03259.pdf https://ermongroup.github.io/blog/bias-and-generalization-dgm/ https://github.com/ermongroup/BiasAndGeneralization/tree/master/Evaluate

On variational lower bounds of mutual information. Poole, Ozair, van den Oord, Alemi, Tucker http://bayesiandeeplearning.org/2018/papers/136.pdf

GAN - why it is so hard to train generative adversarial networks . Hui https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

Counterfactuals uncover the modular structure of deep generative models. Besserve, Sun, Scholkopf. https://arxiv.org/pdf/1812.03253.pdf

Learning independent causal mechanisms. Parascandolo, Kilbertus, Rojas-Carulla, Scholkopf https://arxiv.org/pdf/1712.00961.pdf

Emergence of invariance and disentanglement in deep representations. Achille, Soatto https://arxiv.org/pdf/1706.01350.pdf

Variational memory encoder-decoder. Le, Tran, Nguyen, Venkatesh https://arxiv.org/pdf/1807.09950.pdf https://github.com/thaihungle/VMED

Variational autoencoders for collaborative filtering. Liang, Krishnan, Hoffman, Jebara https://arxiv.org/pdf/1802.05814.pdf

Invariant representations without adversarial training. Moyer, Gao, Brekelmans, Steeg, Galstyan http://papers.nips.cc/paper/8122-invariant-representations-without-adversarial-training.pdf https://github.com/dcmoyer/inv-rep

Density estimation: Variational autoencoders. Rui Shu http://ruishu.io/2018/03/14/vae/

TherML: The thermodynamics of machine learning. Alemi, Fishcer https://arxiv.org/pdf/1807.04162.pdf

Leveraging the exact likelihood of deep latent variable models. Mattei, Frellsen https://arxiv.org/pdf/1802.04826.pdf

What is wrong with VAEs? Kosiorek http://akosiorek.github.io/ml/2018/03/14/what_is_wrong_with_vaes.html

Stochastic variational video prediction. Babaeizadeh, Finn, Erhan, Campbell, Levine https://arxiv.org/pdf/1710.11252.pdf https://github.com/alexlee-gk/video_prediction

Variational attention for sequence-to-sequence models. Bahuleyan, Mou, Vechtomova, Poupart https://arxiv.org/pdf/1712.08207.pdf https://github.com/variational-attention/tf-var-attention

FactorVAE Disentangling by factorizing. Kim, Minh https://arxiv.org/pdf/1802.05983.pdf

Disentangling factors of variation with cycle-consistent variational autoencoders. Jha, Anand, Singh, Veeravasarapu https://arxiv.org/pdf/1804.10469.pdf https://github.com/ananyahjha93/cycle-consistent-vae

Isolating sources of disentanglement in VAEs. Chen, Li, Grosse, Duvenaud https://arxiv.org/pdf/1802.04942.pdf

VAE with a VampPrior. Tomczak, Welling https://arxiv.org/pdf/1705.07120.pdf

A Framework for the quantitative evaluation of disentangled representations. Eastwood, Williams https://openreview.net/pdf?id=By-7dz-AZ https://github.com/cianeastwood/qedr

Recent advances in autoencoder based representation learning. Tschannen, Bachem, Lucic https://arxiv.org/pdf/1812.05069.pdf

InfoVAE: Balancing learning and inference in variational autoencoders. Zhao, Song, Ermon https://arxiv.org/pdf/1706.02262.pdf

Understanding disentangling in Beta-VAE. Burgess, Higgins, Pal, Matthey, Watters, Desjardins, Lerchner https://arxiv.org/pdf/1804.03599.pdf

Hidden Talents of the Variational autoencoder. Dai, Wang, Aston, Hua, Wipf https://arxiv.org/pdf/1706.05148.pdf

Variational Inference of disentangled latent concepts from unlabeled observations. Kumar, Sattigeri, Balakrishnan https://arxiv.org/abs/1711.00848

Self-supervised learning of a facial attribute embedding from video. Wiles, Koepke, Zisserman http://www.robots.ox.ac.uk/~vgg/publications/2018/Wiles18a/wiles18a.pdf

Wasserstein auto-encoders. Tolstikhin, Bousquet, Gelly, Scholkopf https://arxiv.org/pdf/1711.01558.pdf

A two-step disentanglement. method Hadad, Wolf, Shahar http://openaccess.thecvf.com/content_cvpr_2018/papers/Hadad_A_Two-Step_Disentanglement_CVPR_2018_paper.pdf https://github.com/naamahadad/A-Two-Step-Disentanglement-Method

Taming VAEs. Rezende, Viola https://arxiv.org/pdf/1810.00597.pdf https://github.com/denproc/Taming-VAEs https://github.com/syncrostone/Taming-VAEs

IntroVAE Introspective variational autoencoders for photographic image synthesis. Huang, Li, He, Sun, Tan https://arxiv.org/pdf/1807.06358.pdf https://github.com/dragen1860/IntroVAE-Pytorch

Information constraints on auto-encoding variational bayes. Lopez, Regier, Jordan, Yosef https://papers.nips.cc/paper/7850-information-constraints-on-auto-encoding-variational-bayes.pdf https://github.com/romain-lopez/HCV

Learning disentangled joint continuous and discrete representations. Dupont https://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete-representations.pdf https://github.com/Schlumberger/joint-vae

Neural discrete representation learning. van den Oord, Vinyals, Kavukcuoglu https://arxiv.org/pdf/1711.00937.pdf https://github.com/1Konny/VQ-VAE https://github.com/ritheshkumar95/pytorch-vqvae

Disentangled sequential autoencoder. Li, Mandt https://arxiv.org/abs/1803.02991 https://github.com/yatindandi/Disentangled-Sequential-Autoencoder

Variational Inference: A review for statisticians. Blei, Kucukelbir, McAuliffe https://arxiv.org/pdf/1601.00670.pdf Advances in Variational Inferece. Zhang, Kjellstrom https://arxiv.org/pdf/1711.05597.pdf

Auto-encoding total correlation explanation. Goa, Brekelmans, Steeg, Galstyan https://arxiv.org/abs/1802.05822 Closest: https://github.com/gregversteeg/CorEx

Fixing a broken ELBO. Alemi, Poole, Fischer, Dillon, Saurous, Murphy https://arxiv.org/pdf/1711.00464.pdf

The information autoencoding family: a lagrangian perspective on latent variable generative models. Zhao, Song, Ermon https://arxiv.org/pdf/1806.06514.pdf https://github.com/ermongroup/lagvae

Debiasing evidence approximations: on importance-weighted autoencoders and jackknife variational inference. Nowozin https://openreview.net/pdf?id=HyZoi-WRb https://github.com/microsoft/jackknife-variational-inference

Unsupervised discrete sentence representation learning for interpretable neural dialog generation. Zhao, Lee, Eskenazi https://vimeo.com/285802293 https://arxiv.org/pdf/1804.08069.pdf https://github.com/snakeztc/NeuralDialog-LAED

Dual swap disentangling. Feng, Wang, Ke, Zeng, Tao, Song https://papers.nips.cc/paper/7830-dual-swap-disentangling.pdf

Multimodal generative models for scalable weakly-supervised learning. Wu, Goodman https://papers.nips.cc/paper/7801-multimodal-generative-models-for-scalable-weakly-supervised-learning.pdf https://github.com/mhw32/multimodal-vae-public https://github.com/panpan2/Multimodal-Variational-Autoencoder

Do deep generative models know what they don't know? Nalisnick, Matsukawa, The, Gorur, Lakshminarayanan https://arxiv.org/pdf/1810.09136.pdf

Glow: generative flow with invertible 1x1 convolutions. Kingma, Dhariwal https://arxiv.org/pdf/1807.03039.pdf https://github.com/openai/glow https://github.com/pytorch/glow

Inference suboptimality in variational autoencoders. Cremer, Li, Duvenaud https://arxiv.org/pdf/1801.03558.pdf https://github.com/chriscremer/Inference-Suboptimality

Adversarial Variational Bayes: unifying variational autoencoders and generative adversarial networks. Mescheder, Mowozin, Geiger https://arxiv.org/pdf/1701.04722.pdf https://github.com/LMescheder/AdversarialVariationalBayes

Semi-amortized variational autoencoders. Kim, Wiseman, Miller, Sontag, Rush https://arxiv.org/pdf/1802.02550.pdf https://github.com/harvardnlp/sa-vae

Spherical Latent Spaces for stable variational autoencoders. Xu, Durrett https://arxiv.org/pdf/1808.10805.pdf https://github.com/jiacheng-xu/vmf_vae_nlp

Hyperspherical variational auto-encoders. Davidson, Falorsi, De Cao, Kipf, Tomczak https://arxiv.org/pdf/1804.00891.pdf https://github.com/nicola-decao/s-vae-tf https://github.com/nicola-decao/s-vae-pytorch

Fader networks: manipulating images by sliding attributes. Lample, Zeghidour, Usunier, Bordes, Denoyer, Ranzato https://arxiv.org/pdf/1706.00409.pdf https://github.com/facebookresearch/FaderNetworks

Training VAEs under structured residuals. Dorta, Vicente, Agapito, Campbell, Prince, Simpson https://arxiv.org/pdf/1804.01050.pdf https://github.com/Garoe/tf_mvg

oi-VAE: output interpretable VAEs for nonlinear group factor analysis. Ainsworth, Foti, Lee, Fox https://arxiv.org/pdf/1802.06765.pdf https://github.com/samuela/oi-vae

infoCatVAE: representation learning with categorical variational autoencoders. Lelarge, Pineau https://arxiv.org/pdf/1806.08240.pdf https://github.com/edouardpineau/infoCatVAE

Iterative Amortized inference. Marino, Yue, Mandt https://arxiv.org/pdf/1807.09356.pdf https://vimeo.com/287766880 https://github.com/joelouismarino/iterative_inference

On unifying Deep Generative Models. Hu, Yang, Salakhutdinov, Xing https://arxiv.org/pdf/1706.00550.pdf

Diverse Image-to-image translation via disentangled representations. Lee, Tseng, Huang, Singh, Yang https://arxiv.org/pdf/1808.00948.pdf https://github.com/HsinYingLee/DRIT

PIONEER networks: progressively growing generative autoencoder. Heljakka, Solin, Kannala https://arxiv.org/pdf/1807.03026.pdf https://github.com/AaltoVision/pioneer

Towards a definition of disentangled representations. Higgins, Amos, Pfau, Racaniere, Matthey, Rezende, Lerchner https://arxiv.org/pdf/1812.02230.pdf

Life-long disentangled representation learning with cross-domain latent homologies. Achille, Eccles, Matthey, Burgess, Watters, Lerchner, Higgins file:///Users/matthewvowels/Downloads/Life-Long_Disentangled_Representation_Learning_wit.pdf

Learning deep disentangled embeddings with F-statistic loss. Ridgeway, Mozer https://arxiv.org/pdf/1802.05312.pdf https://github.com/kridgeway/f-statistic-loss-nips-2018

Learning latent subspaces in variational autoencoders. Klys, Snell, Zemel https://arxiv.org/pdf/1812.06190.pdf

On the latent space of Wasserstein auto-encoders. Rubenstein, Scholkopf, Tolstikhin. https://arxiv.org/pdf/1802.03761.pdf https://github.com/tolstikhin/wae

Learning disentangled representations with Wasserstein auto-encoders. Rubenstein, Scholkopf, Tolstikhin https://openreview.net/pdf?id=Hy79-UJPM

The mutual autoencoder: controlling information in latent code representations. Phuong, Kushman, Nowozin, Tomioka, Welling https://openreview.net/pdf?id=HkbmWqxCZ https://openreview.net/pdf?id=HkbmWqxCZ http://2017.ds3-datascience-polytechnique.fr/wp-content/uploads/2017/08/DS3_posterID_048.pdf

Auxiliary guided autoregressive variational autoencoders. Lucas, Verkbeek https://openreview.net/pdf?id=HkGcX--0- https://github.com/pclucas14/aux-vae

Interventional robustness of deep latent variable models. Suter, Miladinovic, Bauer, Scholkopf https://pdfs.semanticscholar.org/8028/a56d6f9d2179416d86837b447c6310bd371d.pdf?_ga=2.190184363.1450484303.1564569882-397935340.1548854421

Understanding degeneracies and ambiguities in attribute transfer. Szabo, Hu, Portenier, Zwicker, Facaro http://openaccess.thecvf.com/content_ECCV_2018/papers/Attila_Szabo_Understanding_Degeneracies_and_ECCV_2018_paper.pdf DNA-GAN: learning disentangled representations from multi-attribute images. Xiao, Hong, Ma https://arxiv.org/pdf/1711.05415.pdf https://github.com/Prinsphield/DNA-GAN

Normalizing flows. Kosiorek http://akosiorek.github.io/ml/2018/04/03/norm_flows.html

Hamiltonian variational auto-encoder Caterini, Doucet, Sejdinovic https://arxiv.org/pdf/1805.11328.pdf

Causal generative neural networks. Goudet, Kalainathan, Caillou, Guyon, Lopez-Paz, Sebag. https://arxiv.org/pdf/1711.08936.pdf https://github.com/GoudetOlivier/CGNN

Flow-GAN: Combining maximum likelihood and adversarial learning in generative models. Grover, Dhar, Ermon https://arxiv.org/pdf/1705.08868.pdf https://github.com/ermongroup/flow-gan

Linked causal variational autoencoder for inferring paired spillover effects. Rakesh, Guo, Moraffah, Agarwal, Liu https://arxiv.org/pdf/1808.03333.pdf https://github.com/rguo12/CIKM18-LCVA

Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. Xu, Chen, Zhao, Li, Bu, Li, Liu, Zhao, Pei, Feng, Chen, Wang, Qiao https://arxiv.org/pdf/1802.03903.pdf

Mutual information neural estimation. Belghazi, Baratin, Rajeswar, Ozair, Bengio, Hjelm. https://arxiv.org/pdf/1801.04062.pdf https://github.com/sungyubkim/MINE-Mutual-Information-Neural-Estimation- https://github.com/mzgubic/MINE

Explorations in homeomorphic variational auto-encoding. Falorsi, de Haan, Davidson, Cao, Weiler, Forre, Cohen. https://arxiv.org/pdf/1807.04689.pdf https://github.com/pimdh/lie-vae

Hierarchical variational memory network for dialogue generation. Chen, Ren, Tang, Zhao, Yin http://delivery.acm.org/10.1145/3190000/3186077/p1653-chen.pdf?ip=86.162.136.199&id=3186077&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1569938843_c07ad21d173fc64a44a22fd6521140cb

World models. Ha, Schmidhuber https://arxiv.org/pdf/1803.10122.pdf

2017

Discovering causal signals in images . Lopez-Paz, Nishihara, Chintala, Scholkopf, Bottou https://arxiv.org/pdf/1605.08179.pdf

Autoencoding variational inference for topic models. Srivastava, Sutton https://arxiv.org/pdf/1703.01488.pdf

Hidden Markov model variational autoencoder for acoustic unit discovery. Ebbers, Heymann, Drude, Glarner, Haeb-Umbach, Raj https://www.isca-speech.org/archive/Interspeech_2017/pdfs/1160.PDF

Application of variational autoencoders for aircraft turbomachinery design. Zalger http://cs229.stanford.edu/proj2017/final-reports/5231979.pdf

Semi-supervised learning with variational autoencoders. Keng http://bjlkeng.github.io/posts/semi-supervised-learning-with-variational-autoencoders/

Causal effect inference with deep latent variable models. Louizos, Shalit, Mooij, Sontag, Zemel, Welling https://arxiv.org/pdf/1705.08821.pdf https://github.com/AMLab-Amsterdam/CEVAE

beta-VAE: learning basic visual concepts with a constrained variational framework. Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner https://openreview.net/pdf?id=Sy2fzU9gl

Challenges in disentangling independent factors of variation. Szabo, Hu, Portenier, Facaro, Zwicker https://arxiv.org/pdf/1711.02245.pdf https://github.com/ananyahjha93/challenges-in-disentangling

Composing graphical models with neural networks for structured representations and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams https://arxiv.org/pdf/1603.06277.pdf

Split-brain autoencoders: unsupervised learning by cross-channel prediction. Zhang, Isola, Efros https://arxiv.org/pdf/1611.09842.pdf

Learning disentangled representations with semi-supervised deep generative models.Siddharth, Paige, van de Meent, Desmaison, Goodman, Kohli, Wood, Torr https://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf https://github.com/probtorch/probtorch

Learning hierarchical features from generative models. Zhao, Song, Ermon https://arxiv.org/pdf/1702.08396.pdf https://github.com/ermongroup/Variational-Ladder-Autoencoder

Multi-level variational autoencoder: learning disentangled representations from grouped observations. Bouchacourt, Tomioka, Nowozin https://arxiv.org/pdf/1705.08841.pdf

Neural Face editing with intrinsic image disentangling. Shu, Yumer, Hadap, Sankavalli, Shechtman, Samaras http://openaccess.thecvf.com/content_cvpr_2017/papers/Shu_Neural_Face_Editing_CVPR_2017_paper.pdf https://github.com/zhixinshu/NeuralFaceEditing

Variational Lossy Autoencoder. Chen, Kingma, Salimans, Duan, Dhariwal, Schulman, Sutskever, Abbeel https://arxiv.org/abs/1611.02731 https://github.com/jiamings/tsong.me/blob/master/_posts/reading/2016-11-08-lossy-vae.md

Unsupervised learning of disentangled and interpretable representations from sequential data. Hsu, Zhang, Glass https://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data.pdf https://github.com/wnhsu/FactorizedHierarchicalVAE https://github.com/wnhsu/ScalableFHVAE

Factorized variational autoencoder for modeling audience reactions to movies. Deng, Navarathna, Carr, Mandt, Yue, Matthews, Mori http://www.yisongyue.com/publications/cvpr2017_fvae.pdf

Learning latent representations for speech generation and transformation. Hsu, Zhang, Glass https://arxiv.org/pdf/1704.04222.pdf https://github.com/wnhsu/SpeechVAE

Unsupervised learning of disentangled representations from video. Denton, Birodkar https://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf https://github.com/ap229997/DRNET

Laplacian pyramid of conditional variational autoencoders. Dorta, Vicente, Agapito, Campbell, Prince, Simpson http://cs.bath.ac.uk/~nc537/papers/cvmp17_LapCVAE.pdf

Neural Photo Editing with Inrospective Adverarial Networks. Brock, Lim, Ritchie, Weston https://arxiv.org/pdf/1609.07093.pdf https://github.com/ajbrock/Neural-Photo-Editor

Discrete Variational Autoencoder. Rolfe https://arxiv.org/pdf/1609.02200.pdf https://github.com/QuadrantAI/dvae

Reinterpreting importance-weighted autoencoders. Cremer, Morris, Duvenaud https://arxiv.org/pdf/1704.02916.pdf https://github.com/FighterLYL/iwae

Density Estimation using realNVP. Dinh, Sohl-Dickstein, Bengio https://arxiv.org/pdf/1605.08803.pdf https://github.com/taesungp/real-nvp https://github.com/chrischute/real-nvp

JADE: Joint autoencoders for disentanglement. Banijamali, Karimi, Wong, Ghosi https://arxiv.org/pdf/1711.09163.pdf Joint Multimodal learning with deep generative models. Suzuki, Nakayama, Matsuo https://openreview.net/pdf?id=BkL7bONFe https://github.com/masa-su/jmvae

Towards a deeper understanding of variational autoencoding models. Zhao, Song, Ermon https://arxiv.org/pdf/1702.08658.pdf https://github.com/ermongroup/Sequential-Variational-Autoencoder

Lagging inference networks and posterior collapse in variational autoencoders. Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran, Shanahan https://arxiv.org/pdf/1611.02648.pdf https://github.com/Nat-D/GMVAE https://github.com/psanch21/VAE-GMVAE

On the challenges of learning with inference networks on sparse, high-dimensional data. Krishnan, Liang, Hoffman https://arxiv.org/pdf/1710.06085.pdf https://github.com/rahulk90/vae_sparse

Stick-breaking Variational Autoencoder. https://arxiv.org/pdf/1605.06197.pdf https://github.com/sporsho/hdp-vae

Deep variational canonical correlation analysis. Wang, Yan, Lee, Livescu https://arxiv.org/pdf/1610.03454.pdf https://github.com/edchengg/VCCA_pytorch

Nonparametric variational auto-encoders for hierarchical representation learning. Goyal, Hu, Liang, Wang, Xing https://arxiv.org/pdf/1703.07027.pdf https://github.com/bobchennan/VAE_NBP/blob/master/report.markdown

PixelSNAIL: An improved autoregressive generative model. Chen, Mishra, Rohaninejad, Abbeel https://arxiv.org/pdf/1712.09763.pdf https://github.com/neocxi/pixelsnail-public

Improved Variational Inference with inverse autoregressive flows. Kingma, Salimans, Jozefowicz, Chen, Sutskever, Welling https://arxiv.org/pdf/1606.04934.pdf https://github.com/kefirski/bdir_vae

It takes (only) two: adversarial generator-encoder networks. Ulyanov, Vedaldi, Lempitsky https://arxiv.org/pdf/1704.02304.pdf https://github.com/DmitryUlyanov/AGE

Symmetric Variational Autoencoder and connections to adversarial learning. Chen, Dai, Pu, Li, Su, Carin https://arxiv.org/pdf/1709.01846.pdf

Reconstruction-based disentanglement for pose-invariant face recognition. Peng, Yu, Sohn, Metaxas, Chandraker https://arxiv.org/pdf/1702.03041.pdf https://github.com/zhangjunh/DR-GAN-by-pytorch

Is maximum likelihood useful for representation learning? Huszár https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Disentangled representation learning GAN for pose-invariant face recognition. Tran, Yin, Liu http://zpascal.net/cvpr2017/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.pdf https://github.com/kayamin/DR-GAN

Improved Variational Autoencoders for text modeling using dilated convolutions. Yang, Hu, Salakhutdinov, Berg-kirkpatrick https://arxiv.org/pdf/1702.08139.pdf

Improving variational auto-encoders using householder flow. Tomczak, Welling https://arxiv.org/pdf/1611.09630.pdf https://github.com/jmtomczak/vae_householder_flow

Sticking the landing: simple, lower-variance gradient estimators for variational inference. Roeder, Wu, Duvenaud. http://proceedings.mlr.press/v97/kingma19a/kingma19a.pdf https://github.com/geoffroeder/iwae

VEEGAN: Reducing mode collapse in GANs using implicit variational learning. Srivastava, Valkov, Russell, Gutmann. https://arxiv.org/pdf/1705.07761.pdf https://github.com/akashgit/VEEGAN

Discovering discrete latent topics with neural variational inference. Miao, Grefenstette, Blunsom https://arxiv.org/pdf/1706.00359.pdf

Variational approaches for auto-encoding generative adversarial networks. Rosca, Lakshminarayana, Warde-Farley, Mohamed https://arxiv.org/pdf/1706.04987.pdf

Variational Autoencoder and extensions. Courville https://ift6266h17.files.wordpress.com/2017/03/vae1.pdf

2016

Deep feature consistent variational autoencoder. Hou, Shen, Sun, Qiu https://arxiv.org/pdf/1610.00291.pdf https://github.com/sbavon/Deep-Feature-Consistent-Variational-AutoEncoder-in-Tensorflow

Neural variational inference for text processing. Miao, Yu, Grefenstette, Blunsom. https://arxiv.org/pdf/1511.06038.pdf

Domain-adversarial training of neural networks. Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky https://arxiv.org/pdf/1505.07818.pdf

Tutorial on Variational Autoencoders. Doersch https://arxiv.org/pdf/1606.05908.pdf

How to train deep variational autoencoders and probabilistic ladder networks. Sonderby, Raiko, Maaloe, Sonderby, Winther https://orbit.dtu.dk/files/121765928/1602.02282.pdf

ELBO surgery: yet another way to carve up the variational evidence lower bound. Hoffman, Johnson http://approximateinference.org/accepted/HoffmanJohnson2016.pdf

Variational inference with normalizing flows. Rezende, Mohamed https://arxiv.org/pdf/1505.05770.pdf

The Variational Fair Autoencoder. Louizos, Swersky, Li, Welling, Zemel https://arxiv.org/pdf/1511.00830.pdf https://github.com/dendisuhubdy/vfae

Information dropout: learning optimal representations through noisy computations. Achille, Soatto https://arxiv.org/pdf/1611.01353.pdf

Domain separation networks. Bousmalis, Trigeorgis, Silberman, Krishnan, Erhan https://arxiv.org/pdf/1608.06019.pdf https://github.com/fungtion/DSN https://github.com/farnazj/Domain-Separation-Networks

Disentangling factors of variation in deep representations using adversarial training. Mathieu, Zhao, Sprechmann, Ramesh, LeCunn https://arxiv.org/pdf/1611.03383.pdf https://github.com/ananyahjha93/disentangling-factors-of-variation-using-adversarial-training

Variational autoencoder for semi-supervised text classification. Xu, Sun, Deng, Tan https://arxiv.org/pdf/1603.02514.pdf https://github.com/wead-hsu/ssvae related: https://github.com/isohrab/semi-supervised-text-classification

Learning what and where to draw. Reed, Sohn, Zhang, Lee https://arxiv.org/pdf/1610.02454.pdf

Attribute2Image: Conditional image generation from visual attributes. Yan, Yang, Sohn, Lee https://arxiv.org/pdf/1512.00570.pdf

Variational inference with normalizing flows. Rezende, Mohamed https://arxiv.org/pdf/1505.05770.pdf https://github.com/ex4sperans/variational-inference-with-normalizing-flows

Wild Variational Approximations. Li, Liu http://approximateinference.org/2016/accepted/LiLiu2016.pdf

Importance Weighted Autoencoders. Burda, Grosse, Salakhutdinov https://arxiv.org/pdf/1509.00519.pdf https://github.com/yburda/iwae https://github.com/xqding/Importance_Weighted_Autoencoders https://github.com/abdulfatir/IWAE-tensorflow

Stacked What-Where Auto-encoders. Zhao, Mathieu, Goroshin, LeCunn https://arxiv.org/pdf/1506.02351.pdf https://github.com/yselivonchyk/Tensorflow_WhatWhereAutoencoder

Disentangling nonlinear perceptual embeddings with multi-query triplet networks. Veit, Belongie, Karaletsos https://www.researchgate.net/profile/Andreas_Veit/publication/301837223_Disentangling_Nonlinear_Perceptual_Embeddings_With_Multi-Query_Triplet_Networks/links/57e2997308ae040ae3c2f3a3/Disentangling-Nonlinear-Perceptual-Embeddings-With-Multi-Query-Triplet-Networks.pdf

Ladder Variational Autoencoders. Sonderby, Raiko, Maaloe, Sonderby, Winther https://arxiv.org/pdf/1602.02282.pdf Variational autoencoder for deep learning of images, labels and captions. Pu, Gan Henao, Yuan, Li, Stevens, Carin https://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf

Approximate inference for deep latent Gaussian mixtures. Nalisnick, Hertel, Smyth https://pdfs.semanticscholar.org/f6fe/5e8e25994c188ba6a124462e2cc55f2c5a67.pdf https://github.com/enalisnick/mixture_density_VAEs

Auxiliary Deep Generative Models. Maaloe, Sonderby, Sonderby, Winther https://arxiv.org/pdf/1602.05473.pdf https://github.com/larsmaaloee/auxiliary-deep-generative-models

Variational methods for conditional multimodal deep learning. Pandey, Dukkipati https://arxiv.org/pdf/1603.01801.pdf

PixelVAE: a latent variable model for natural images. Gulrajani, Kumar, Ahmed, Taiga, Visin, Vazquez, Courville https://arxiv.org/pdf/1611.05013.pdf https://github.com/igul222/PixelVAE https://github.com/kundan2510/pixelVAE

Adversarial autoencoders. Makhzani, Shlens, Jaitly, Goodfellow, Frey https://arxiv.org/pdf/1511.05644.pdf https://github.com/conan7882/adversarial-autoencoders

A hierarchical latent variable encoder-decoder model for generating dialogues. Serban, Sordoni, Lowe, Charlin, Pineau, Courville, Bengio http://www.cs.toronto.edu/~lcharlin/papers/vhred_aaai17.pdf

Infinite variational autoencoder for semi-supervised learning. Abbasnejad, Dick https://arxiv.org/pdf/1611.07800.pdf

f-GAN: Training generative neural samplers using variational divergence minimization. Nowozin, Cseke https://arxiv.org/pdf/1606.00709.pdf https://github.com/LynnHo/f-GAN-Tensorflow

DISCO Nets: DISsimilarity Coefficient networks Bouchacourt, Kumar, Nowozin https://arxiv.org/pdf/1606.02556.pdf https://github.com/oval-group/DISCONets

Information dropout: learning optimal representations through noisy computations. Achille, Soatto https://arxiv.org/pdf/1611.01353.pdf

Weakly-supervised disentangling with recurrent transformations for 3D view synthesis. Yang, Reed, Yang, Lee https://arxiv.org/pdf/1601.00706.pdf https://github.com/jimeiyang/deepRotator

Autoencoding beyond pixels using a learned similarity metric. Boesen, Larsen, Sonderby, Larochelle, Winther https://arxiv.org/pdf/1512.09300.pdf https://github.com/andersbll/autoencoding_beyond_pixels

Generating images with perceptual similarity metrics based on deep networks Dosovitskiy, Brox. https://arxiv.org/pdf/1602.02644.pdf https://github.com/shijx12/DeepSim

A note on the evaluation of generative models. Theis, van den Oord, Bethge. https://arxiv.org/pdf/1511.01844.pdf

InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel https://arxiv.org/pdf/1606.03657.pdf https://github.com/openai/InfoGAN

Disentangled representations in neural models. Whitney https://arxiv.org/abs/1602.02383

A recurrent latent variable model for sequential data. Chung, Kastner, Dinh, Goel, Courville, Bengio https://arxiv.org/pdf/1506.02216.pdf

Unsupervised learning of 3D structure from images. Rezende, Eslami, Mohamed, Battaglia, Jaderberg, Heess https://arxiv.org/pdf/1607.00662.pdf

2015

Deep learning and the information bottleneck principle Tishby, Zaslavsky https://arxiv.org/pdf/1503.02406.pdf

Training generative neural networks via Maximum Mean Discrepancy optimization. Dziugaite, Roy, Ghahramani https://arxiv.org/pdf/1505.03906.pdf

NICE: non-linear independent components estimation. Dinh, Krueger, Bengio https://arxiv.org/pdf/1410.8516.pdf

Deep convolutional inverse graphics network. Kulkarni, Whitney, Kohli, Tenenbaum https://arxiv.org/pdf/1503.03167.pdf https://github.com/yselivonchyk/TensorFlow_DCIGN

Learning structured output representation using deep conditional generative models. Sohn, Yan, Lee https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf https://github.com/wsjeon/ConditionalVariationalAutoencoder

Latent variable model with diversity-inducing mutual angular regularization. Xie, Deng, Xing https://arxiv.org/pdf/1512.07336.pdf

DRAW: a recurrent neural network for image generation. Gregor, Danihelka, Graves, Rezende, Wierstra. https://arxiv.org/pdf/1502.04623.pdf https://github.com/ericjang/draw

Variational Inference II. Xing, Zheng, Hu, Deng https://www.cs.cmu.edu/~epxing/Class/10708-15/notes/10708_scribe_lecture13.pdf

2014

Auto-encoding variational Bayes. Kingma, Welling https://arxiv.org/pdf/1312.6114.pdf

Learning to disentangle factors of variation with manifold interaction. Reed, Sohn, Zhang, Lee http://proceedings.mlr.press/v32/reed14.pdf

Semi-supervised learning with deep generative models. Kingma, Rezende, Mohamed, Welling https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf https://github.com/saemundsson/semisupervised_vae https://github.com/Response777/Semi-supervised-VAE

Stochastic backpropagation and approximate inference in deep generative models. Rezende, Mohamed, Wierstra https://arxiv.org/pdf/1401.4082.pdf https://github.com/ashwindcruz/dgm/tree/master/adgm_mnist

Representation learning: a review and new perspectives. Bengio, Courville, Vincent https://arxiv.org/pdf/1206.5538.pdf

2011

Transforming Auto-encoders. Hinton, Krizhevsky, Wang https://www.cs.toronto.edu/~hinton/absps/transauto6.pdf

2008

Graphical models, exponential families, and variational inference. Wainwright, Jordan et al

2000

The information bottleneck method. Tishby, Pereira, Bialek https://arxiv.org/pdf/physics/0004057.pdf

About

A curated list of awesome work on VAEs, disentanglement, representation learning, and generative models.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published