Skip to content

uclnlp/EMAT

Repository files navigation

EMAT: An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks

Installation and Setup

# create a conda environment
conda create -n emat -y python=3.8 && conda activate emat

# install pytorch
pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html  # GPU
pip install torch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1  # CPU

# install transformers
pip install transformers==4.14.1

# install faiss
pip install faiss-gpu==1.7.1.post3  # GPU
pip install faiss-cpu==1.7.1.post3  # CPU

# install dependencies
pip install -r requirements.txt

# install this package for development
pip install -e .

Download datasets

link: https://pan.baidu.com/s/1MwPzVLqZqslqCpWAtPVZ-Q

code: tynj

Download PAQ data from: https://github.com/facebookresearch/PAQ

Run Interactive Script

Before running the following scripts, embeddings of key-value memory, index and PAQ should be prepared. See Start to build your key-value memory and index.

NQ: use torch-embedding as retrieval index:

python demo.py \
  --model_name_or_path="./EMAT_ckpt/FKSV-NQ" \
  --qas_to_retrieve_from="./data/PAQ_L1" \
  --test_task="nq" \
  --task_train_data="./annotated_datasets/NQ-open.train-train.jsonl" \
  --task_dev_data="./annotated_datasets/NQ-open.train-dev.jsonl" \
  --embedding_index="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/embedding_index.pt"
  --key_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/key_memory.pt" \
  --value_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/value_memory.pt"

NQ: use faiss as retrieval index:

python demo.py \
  --model_name_or_path="./EMAT_ckpt/FKSV-NQ" \
  --qas_to_retrieve_from="./data/PAQ_L1" \
  --test_task="nq" \
  --task_train_data="./annotated_datasets/NQ-open.train-train.jsonl" \
  --task_dev_data="./annotated_datasets/NQ-open.train-dev.jsonl" \
  --use_faiss \
  --faiss_index_path="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/key.sq8hnsw.80n80efc.faiss" \
  --key_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/key_memory.pt" \
  --value_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_ckpt/value_memory.pt"

Use SKSV model with faiss parallely search:

python demo.py \
  --model_name_or_path="./EMAT_ckpt/SKSV-NQ" \
  --qas_to_retrieve_from="./data/PAQ_L1" \
  --test_task="nq" \
  --task_train_data="./annotated_datasets/NQ-open.train-train.jsonl" \
  --task_dev_data="./annotated_datasets/NQ-open.train-dev.jsonl" \
  --use_faiss \
  --faiss_index_path="./embedding_and_faiss/PAQ_L1_from_nq_SKSV_ckpt/key.sq8hnsw.80n80efc.faiss" \
  --key_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_SKSV_ckpt/key_memory.pt" \
  --value_memory_path="./embedding_and_faiss/PAQ_L1_from_nq_SKSV_ckpt/value_memory.pt"

Run Wizard-of-Wikipedia Dialogue:

python demo.py \
  --model_name_or_path="./EMAT_ckpt/FKSV-WQ/" \
  --qas_to_retrieve_from="./tmp/PAQ_L1.pkl" \
  --test_task="wow_kilt" \
  --embedding_index_path="./embedding_and_faiss/debug_from_wow_ckpt/embedding_index.pt" \
  --key_memory_path="./embedding_and_faiss/PAQ_L1_from_wow_ckpt/key_memory.pt" \
  --value_memory_path="./embedding_and_faiss/PAQ_L1_from_wow_ckpt/value_memory.pt" \
  --inference_data_path="./annotated_datasets/wizard_of_wikipedia/wow-test_without_answers-kilt.jsonl.txt"

Start

1. Pre-training

Pre-train EMAT-FKSV: bash pretrain_scripts/pretrain_emat.sh

Pre-train EMAT-SKSV: bash pretrain_scripts/pretrain_sksv_emat.sh

2. Fine-tune:

Fine-tune on NQ: bash scripts/nq_train_with_paql1.sh

Fine-tune on TQ: bash scripts/tq_train_with_paql1.sh

Fine-tune on WQ: bash scripts/wq_train_with_paql1.sh

Fine-tune on WoW : bash kilt_scripts/wow_train.sh

Fine-tune on ELI5: bash kilt_scripts/eli5_train.sh

3. Evaluation:

Evaluate NQ/TQ/WQ: bash scripts/nq_eval.sh, switch DATA_NAME to evaluate different dataset.

Evaluate WoW/ELI5: bash kilt_scirpts/eval_kilt.sh. You can upload the output prediction file to http://kiltbenchmark.com/ to get evaluation results.

4. Embed PAQ using fine-tuned NQ model and build FAISS index:

bash embed_scripts/nq_embed_paq_and_build_faiss.sh

5. Inference Speed

Test inference speed on inference_with_faiss.py

About

Efficient Memory-Augmented Transformers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published