Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update docs #755

Merged
merged 2 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
542 changes: 542 additions & 0 deletions docs_src/sphinx/source/bibliography.bib

Large diffs are not rendered by default.

6 changes: 6 additions & 0 deletions docs_src/sphinx/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,9 @@

# -- General configuration ---------------------------------------------------

numfig = True # auto-numbering for figures, reference by name


# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
Expand All @@ -45,8 +48,11 @@
#'numpydoc',
'sphinx.ext.napoleon',
'sphinxarg.ext',
'sphinxcontrib.bibtex',
]

bibtex_bibfiles = ["bibliography.bib"]
bibtex_reference_style = "author_year"

# -- Config for some extensions ----------------------------------------------
autosectionlabel_prefix_document = True
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
451 changes: 261 additions & 190 deletions docs_src/sphinx/source/model_overview.rst

Large diffs are not rendered by default.

219 changes: 3 additions & 216 deletions docs_src/sphinx/source/references.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,219 +9,6 @@
References
################

.. Formatting follows the Ecological Applications style

Balshi, M. S., A. D. McGuire, Q. Zhuang, J. Melillo, D. W. Kicklighter, E.
Kasischke, C. Wirth, M. Flannigan, J. Harden, J. S. Clein, T. J. Burnside, J.
McAllister, W. A. Kurz, M. Apps, and A. Shvidenko. 2007. The role of
historical fire disturbance in the carbon dynamics of the pan-boreal region:
A process-based analysis. Journal of Geophysical Research: Biogeosciences
112.
https://doi.org/10.1029/2006JG000380

Balshi, M. S., A. D. Mcguire, P. Duffy, M. Flannigan, D. W. Kicklighter, and
J. Melillo. 2009. Vulnerability of carbon storage in North American boreal
forests to wildfires during the 21st century. Global Change Biology 15.
https://doi.org/10.1111/j.1365-2486.2009.01877.x

Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J.
Melillo. 2009. Assessing the response of area burned to changing climate in
western boreal North America using a Multivariate Adaptive Regression Splines
(MARS) approach. Global Change Biology 15.
https://doi.org/10.1111/j.1365-2486.2008.01679.x

Beringer, J., A. H. Lynch, F. S. I. Chapin, M. Mack, and G. B. Bonan. 2001.
The representation of arctic soils in the land surface model: The importance
of mosses. Journal of Climate 14.
`https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2
<https://doi.org/10.1175/1520-0442(2001)014\<3324:TROASI\>2.0.CO;2>`_

Decker, M., and X. Zeng. 2009. Impact of Modified Richards Equation on Global
Soil Moisture Simulation in the Community Land Model (CLM3.5). Journal of
Advances in Modeling Earth Systems 1.
https://doi.org/10.3894/james.2009.1.5

Euskirchen, E. S., C. W. Edgar, M. R. Turetsky, M. P. Waldrop, and J. W.
Harden. 2014. Differential response of carbon fluxes to climate in three
peatland ecosystems that vary in the presence and stability of permafrost.
Journal of Geophysical Research: Biogeosciences 119.
https://doi.org/10.1002/2014JG002683

Euskirchen, E. S., A. D. Mcguire, F. S. Chapin, S. Yi, and C. C. Thompson.
2009. Changes in vegetation in northern Alaska under scenarios of climate
change, 2003-2100: implications for climate feedbacks. Ecological
Applications 19.
https://doi.org/10.1890/08-0806.1

Euskirchen, E. S., A. D. McGuire, D. W. Kicklighter, Q. Zhuang, J. S. Clein,
R. J. Dargaville, D. G. Dye, J. S. Kimball, K. C. McDonald, J. M. Melillo, V.
E. Romanovsky, and N. V. Smith. 2006. Importance of recent shifts in soil
thermal dynamics on growing season length, productivity, and carbon
sequestration in terrestrial high-latitude ecosystems. Global Change Biology
12.
https://doi.org/10.1111/j.1365-2486.2006.01113.x

Euskirchen, E. S., T. B. Carman, and A. D. Mcguire. 2014. Changes in the
structure and function of northern Alaskan ecosystems when considering
variable leaf-out times across groupings of species in a dynamic vegetation
model. Global Change Biology 20.
https://doi.org/10.1111/gcb.12392

Euskirchen, E. S., S. P. Serbin, T. B. Carman, J. M. Fraterrigo, H. Genet, C.
M. Iversen, V. Salmon, and A. D. McGuire. 2022. Assessing dynamic vegetation
model parameter uncertainty across Alaskan arctic tundra plant communities.
Ecological Applications 32.
https://doi.org/10.1002/eap.2499

Fan, Z., A. David Mcguire, M. R. Turetsky, J. W. Harden, J. Michael
Waddington, and E. S. Kane. 2013. The response of soil organic carbon of a
rich fen peatland in interior Alaska to projected climate change. Global
Change Biology 19.
https://doi.org/10.1111/gcb.12041

Genet, H., A. D. McGuire, K. Barrett, A. Breen, E. S. Euskirchen, J. F.
Johnstone, E. S. Kasischke, A. M. Melvin, A. Bennett, M. C. Mack, T. S. Rupp,
A. E. G. Schuur, M. R. Turetsky, and F. Yuan. 2013. Modeling the effects of
fire severity and climate warming on active layer thickness and soil carbon
storage of black spruce forests across the landscape in interior Alaska.
Environmental Research Letters 8.
https://doi.org/10.1088/1748-9326/8/4/045016

Genet, H., Y. He, Z. Lyu, A. D. McGuire, Q. Zhuang, J. Clein, D. D’Amore, A.
Bennett, A. Breen, F. Biles, E. S. Euskirchen, K. Johnson, T. Kurkowski, S.
Kushch Schroder, N. Pastick, T. S. Rupp, B. Wylie, Y. Zhang, X. Zhou, and Z.
Zhu. 2018. The role of driving factors in historical and projected carbon
dynamics of upland ecosystems in Alaska: Ecological Applications 28.
https://doi.org/10.1002/eap.1641

Hayes, D. J., A. D. McGuire, D. W. Kicklighter, K. R. Gurney, T. J. Burnside,
and J. M. Melillo. 2011. Is the northern high-latitude land-based CO 2 sink
weakening? Global Biogeochemical Cycles 25.
https://doi.org/10.1029/2010GB003813

Hayes, D. J., A. D. McGuire, D. W. Kicklighter, T. J. Burnside, and J. M.
Melillo. 2011. The effects of land cover and land use change on the
contemporary carbon balance of the arctic and boreal terrestrial ecosystems
of Northern Eurasia. Page Eurasian Arctic Land Cover and Land Use in a
Changing Climate.
https://doi.org/10.1007/978-90-481-9118-5_6

Jordan, R. 1991. A One-Dimensional Temperature Model for a Snow Cover:
Technical Documentation for SNTHERM.89. Page U.S.Army Corps of Engineers,
Cold Regions Research & Engineering Laboratory.
http://hdl.handle.net/11681/11677

Kelly, R., H. Genet, A. D. McGuire, and F. S. Hu. 2016. Palaeodata-informed
modelling of large carbon losses from recent burning of boreal forests.
Nature Climate Change 6.
https://doi.org/10.1038/nclimate2832

Lara, M. J., A. D. Mcguire, E. S. Euskirchen, C. E. Tweedie, K. M. Hinkel, A.
N. Skurikhin, V. E. Romanovsky, G. Grosse, W. R. Bolton, and H. Genet. 2015.
Polygonal tundra geomorphological change in response to warming alters future
CO2 and CH4 flux on the Barrow Peninsula. Global Change Biology 21.
https://doi.org/10.1111/gcb.12757

Lundin, L. C. 1990. Hydraulic properties in an operational model of frozen
soil. Journal of Hydrology 118.
https://doi.org/10.1016/0022-1694(90)90264-X

Lyu, Z., H. Genet, Y. He, Q. Zhuang, A. D. McGuire, A. Bennett, A. Breen, J.
Clein, E. S. Euskirchen, K. Johnson, T. Kurkowski, N. J. Pastick, T. S. Rupp,
B. K. Wylie, and Z. Zhu. 2018. The role of environmental driving factors in
historical and projected carbon dynamics of wetland ecosystems in Alaska.
Ecological Applications 28.
https://doi.org/10.1002/eap.1755

McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace,
B. Moore, and C. J. Vorosmarty. 1992. Interactions between carbon and
nitrogen dynamics in estimating net primary productivity for potential
vegetation in North America. Global Biogeochemical Cycles 6.
https://doi.org/10.1029/92GB00219

McGuire, A. D., H. Genet, Z. Lyu, N. Pastick, S. Stackpoole, R. Birdsey, D.
D’Amore, Y. He, T. S. Rupp, R. Striegl, B. K. Wylie, X. Zhou, Q. Zhuang, and
Z. Zhu. 2018. Assessing historical and projected carbon balance of Alaska: A
synthesis of results and policy/management implications. Ecological
Applications 28.
https://doi.org/10.1002/eap.1768

Niu, G. Y., Z. L. Yang, R. E. Dickinson, and L. E. Gulden. 2005. A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models. Journal of Geophysical Research Atmospheres 110.
https://doi.org/10.1029/2005JD006111

Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A.
Steudler, B. J. Peterson, A. L. Grace, B. Moore, and C. J. Vorosmarty. 1991.
Potential net primary productivity in south-america - application of a
global-model. Ecological Applications 1:399–429.
https://doi.org/10.2307/1941899

Raleigh, M. S., C. C. Landry, M. Hayashi, W. L. Quinton, and J. D. Lundquist.
2013. Approximating snow surface temperature from standard temperature and
humidity data: New possibilities for snow model and remote sensing
evaluation. Water Resources Research 49.
https://doi.org/10.1002/2013WR013958

Swenson, S. C., D. M. Lawrence, and H. Lee. 2012. Improved simulation of the
terrestrial hydrological cycle in permafrost regions by the Community Land
Model. Journal of Advances in Modeling Earth Systems 4.
https://doi.org/10.1029/2012MS000165

Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich.
1999. The sensitivity of terrestrial carbon storage to historical climate
variability and atmospheric CO2 in the United States. Tellus Series
B-Chemical and Physical Meteorology 51:414–452.
from mendeley: 10.3402/tellusb.v51i2.16318
https://doi.org/10.1034/j.1600-0889.1999.00021.x

Walter, B. P., and M. Heimann. 2000. A process-based, climate-sensitive model
to derive methane emissions from natural wetlands: Application to five
wetland sites, sensitivity to model parameters, and climate. Global
Biogeochemical Cycles 14:745–765.
https://doi.org/10.1029/1999gb001204

Woo, M. K., M. A. Arain, M. Mollinga, and S. Yi. 2004. A two-directional
freeze and thaw algorithm for hydrologic and land surface modelling.
Geophysical Research Letters 31:L12501.
https://doi.org/10.1029/2004gl019475

Yi, S., A. D. McGuire, J. Harden, E. Kasischke, K. Manies, L. Hinzman, A.
Liljedahl, J. Randerson, H. Liu, V. Romanovsky, S. Marchenko, and Y. Kim.
2009. Interactions between soil thermal and hydrological dynamics in the
response of Alaska ecosystems to fire disturbance. Journal of Geophysical
Research-Biogeosciences 114:G02015.
https://doi.org/10.1029/2008jg000841

Yi, S., A. D. McGuire, E. Kasischke, J. Harden, K. Manies, M. Mack, and M.
Turetsky. 2010. A dynamic organic soil biogeochemical model for simulating
the effects of wildfire on soil environmental conditions and carbon dynamics
of black spruce forests. Journal of Geophysical Research-Biogeosciences 115.
https://doi.org/10.1029/2010jg001302

Yuan, F. M., S. H. Yi, A. D. McGuire, K. D. Johnson, J. Liang, J. W. Harden,
E. S. Kasischke, and W. A. Kurz. 2012. Assessment of boreal forest historical
C dynamics in the Yukon River Basin: relative roles of warming and fire
regime change. Ecological Applications 22:2091–2109.
https://doi.org/10.1890/11-1957.1

Zhuang, Q., A. D. McGuire, J. M. Melillo, J. S. Clein, R. J. Dargaville, D.
W. Kicklighter, R. B. Myneni, J. Dong, V. E. Romanovsky, J. Harden, and J. E.
Hobbie. 2003. Carbon cycling in extratropical terrestrial ecosystems of the
Northern Hemisphere during the 20th century: a modeling analysis of the
influences of soil thermal dynamics. Tellus Series B-Chemical and Physical
Meteorology 55:751–776.
https://doi.org/10.3402/tellusb.v55i3.16368

Zhuang, Q., A. D. McGuire, K. P. O’Neill, J. W. Harden, V. E. Romanovsky, and
J. Yarie. 2003. Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska. Journal of Geophysical Research:
Atmospheres 108.
https://doi.org/10.1029/2001jd001244

Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P.
A. Steudler, B. S. Felzer, and S. Hu. 2004. Methane fluxes between
terrestrial ecosystems and the atmosphere at northern high latitudes during
the past century: A retrospective analysis with a process-based
biogeochemistry model. Global Biogeochemical Cycles 18.
https://doi.org/10.1029/2004GB002239
.. bibliography::
:all:
:style: plain
60 changes: 60 additions & 0 deletions docs_src/sphinx/source/running_dvmdostem.rst
Original file line number Diff line number Diff line change
Expand Up @@ -412,8 +412,68 @@ Parallel Options
==================================
Processing Outputs
==================================

WRITE THIS....

------------------
Output Selection
------------------
WRITE THIS...

.. note:: draft thoughts:
NetCDF outputs are specified in a csv file named in config/config.js. The
csv file specifies a variable name (for identification only - it does not
correspond to the variable name in the code), a short description, units,
and what level of detail to output on (timestep and variable part).
[Link to default file after PR merge] Variable name, Description,
Units, Yearly, Monthly, Daily, PFT, Compartment, Layer,
Example entry: VEGC,Total veg. biomass C,gC/m2,y,m,,p,c,,
This will output VegC every month, and provide both PFT and PFT
compartment values.
The file is more user-friendly when viewed in a spreadsheet.
[example]
A complete list of output combinations is below
The initial list of outputs can be found at Issue #252
LAYERDEPTH, LAYERDZ, and LAYERTYPE should be automatically output if
the user specifies any by-layer output. They are not currently, so ensure
that they are specified on the same timestep as the desired output.
HKLAYER, LAYERDEPTH, LAYERDZ, LAYERTYPE, TCLAYER, TLAYER, and VWCLAYER
must have the layer option specified or they will generate NetCDF
dimension bound errors.


-------------
Process
-------------
WRITE THIS...

.. note:: draft thoughts:
A single output file will be produced for each entry in the specifying file,
based on variable name, timestep, and run stage.
VEGC_monthly_eq.nc
At the beginning of the model run, an output file will be constructed for each
variable specified, for each run stage where NetCDF output is indicated and that
has more than 0 years of run time.
Currently the model tracks the variables specified for each timestep as separate
sets (i.e. monthly separate from yearly, etc). This reduces the number of map
lookups every time the output function is called, but increases the number of
monthly vs. yearly string comparisons.

------------------------------
Variable Output Combinations
------------------------------
WRITE THIS...

.. note:: draft thoughts:
'-' indicates that the combination is not an option 'x' indicates that the
combination has been implemented in the code '?' indicates that it is undecided
if the combination should be made available, or that structure in the code needs
to be modified to make data available for output.
Three variables should be automatically written out if any by-layer variable is
specified: Layer type Layer depth Layer thickness Currently they are written out
like standard variables. Automation will need to be added in the future.


==================================
Processing Inputs
==================================
Expand Down
11 changes: 6 additions & 5 deletions docs_src/sphinx/source/software_development_info.rst
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,8 @@ To build the Sphinx documentation (this document) locally, then do the following
.. code:: shell

$ make clean
$ PYTHONPATH="/work:/work/calibration:$PYTHONPATH" make html
$ export PYTHONPATH="/work:/work/scripts:/work/scripts/util:/work/calibration:$PYTHONPATH"
$ make html


The resulting files are in the ``docs_src/sphinx/build/html`` directory and can
Expand Down Expand Up @@ -256,8 +257,8 @@ image to render, directly from Google Docs when someone loads the page:

.. code:: html

<!-- From Tobey Carman's google drawing "dvmdostem-general-idea-science"-->
<img src="https://docs.google.com/drawings/d/17AWgyjGv3fWRLhEPX7ayJKSZt3AXcBILXN2S-FGQHeY/pub?w=960&amp;h=720">
<!-- From Shared Drive > "Documentation Embed Images, dvmdostem-general-idea-science"-->
<img src="https://docs.google.com/drawings/d/e/2PACX-1vT8BiV8S8_oCTOghlwsSkdyoxY7bm1sArD6y_JVx8PEBQF5OF3KYEonCH1v5T0bDbqsGw8zMDaZvoSh/pub?w=966&amp;h=519">

If the original Google Drawing is updated, then the drawing seen in the wiki
will be updated too. Take caution with the permissions granted for editing
Expand All @@ -267,14 +268,14 @@ on the original drawing!

When you are editing an image that is embedded, the edits are automatically
live on the published website! This is fine for quick edits such as fixing a
typo, but for anything more substantial, it is reccomended that you make a
typo, but for anything more substantial, it is recommended that you make a
duplicate of the Google Drawing, edit the duplicate and then copy it back
over the original. This will keep your edits from showing up on the live site
until you are done with them!

.. warning::

Soure drawings for this document should probably be stored in the
Soucre drawings for this document should probably be stored in the
Shared Google Drive so that they are not tied to an individual's account.

In Google Docs, there is a way to insert a Google Drawing from a menu:
Expand Down
14 changes: 9 additions & 5 deletions requirements_general_dev.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,14 +6,18 @@ netCDF4==1.5.8
commentjson==0.9.0
ipython==8.10.0
jupyter==1.0.0
jupyter-sphinx==0.4.0
lhsmdu==1.1
Sphinx==5.1.1
sphinx-rtd-theme==1.1.0
sphinx-toolbox==3.4.0
sphinx-argparse==0.4.0
xarray==2023.1.*
pypdf==5.1.*

# for SA - maybe merits its own file??
scikit-learn

# For building documentation
Sphinx==5.1.1
sphinx-rtd-theme==1.1.0
sphinx-toolbox==3.4.0
sphinx-argparse==0.4.0
sphinxcontrib-bibtex
jupyter-sphinx==0.4.0

Loading