-
Notifications
You must be signed in to change notification settings - Fork 487
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement 3D and transposed 3D convolutions.
- Loading branch information
Showing
53 changed files
with
6,105 additions
and
221 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
use backend_comparison::persistence::save; | ||
use burn::tensor::{ | ||
backend::Backend, module::conv3d, ops::ConvOptions, Distribution, Shape, Tensor, | ||
}; | ||
use burn_common::{ | ||
benchmark::{run_benchmark, Benchmark}, | ||
sync_type::SyncType, | ||
}; | ||
|
||
pub struct Conv3dBenchmark<B: Backend> { | ||
input_shape: Shape<5>, | ||
weight_shape: Shape<5>, | ||
bias_shape: Shape<1>, | ||
options: ConvOptions<3>, | ||
device: B::Device, | ||
} | ||
|
||
impl<B: Backend> Benchmark for Conv3dBenchmark<B> { | ||
type Args = (Tensor<B, 5>, Tensor<B, 5>, Tensor<B, 1>); | ||
|
||
fn name(&self) -> String { | ||
"conv3d".into() | ||
} | ||
|
||
fn shapes(&self) -> Vec<Vec<usize>> { | ||
vec![ | ||
self.input_shape.dims.into(), | ||
self.weight_shape.dims.into(), | ||
self.bias_shape.dims.into(), | ||
] | ||
} | ||
|
||
fn execute(&self, (x, w, b): Self::Args) { | ||
conv3d(x, w, Some(b), self.options.clone()); | ||
} | ||
|
||
fn prepare(&self) -> Self::Args { | ||
( | ||
Tensor::random( | ||
self.input_shape.clone(), | ||
Distribution::Default, | ||
&self.device, | ||
), | ||
Tensor::random( | ||
self.weight_shape.clone(), | ||
Distribution::Default, | ||
&self.device, | ||
), | ||
Tensor::random(self.bias_shape.clone(), Distribution::Default, &self.device), | ||
) | ||
} | ||
|
||
fn sync(&self) { | ||
B::sync(&self.device, SyncType::Wait) | ||
} | ||
} | ||
|
||
#[allow(dead_code)] | ||
fn bench<B: Backend>( | ||
device: &B::Device, | ||
feature_name: &str, | ||
url: Option<&str>, | ||
token: Option<&str>, | ||
) { | ||
// Shapes | ||
let batch_size = 16; | ||
let channels_in = 16; | ||
let channels_out = 16; | ||
let depth_in = 16; | ||
let height_in = 128; | ||
let width_in = 128; | ||
let kernel_size_0 = 3; | ||
let kernel_size_1 = 3; | ||
let kernel_size_2 = 3; | ||
|
||
// Options | ||
let strides = [1, 1, 1]; | ||
let padding = [0, 0, 0]; | ||
let dilations = [1, 1, 1]; | ||
let groups = 1; | ||
let options = ConvOptions::new(strides, padding, dilations, groups); | ||
let benchmark = Conv3dBenchmark::<B> { | ||
input_shape: [batch_size, channels_in, depth_in, height_in, width_in].into(), | ||
weight_shape: [ | ||
channels_in, | ||
channels_out / groups, | ||
kernel_size_0, | ||
kernel_size_1, | ||
kernel_size_2, | ||
] | ||
.into(), | ||
bias_shape: [channels_out].into(), | ||
options, | ||
device: device.clone(), | ||
}; | ||
|
||
save::<B>( | ||
vec![run_benchmark(benchmark)], | ||
device, | ||
feature_name, | ||
url, | ||
token, | ||
) | ||
.unwrap(); | ||
} | ||
|
||
fn main() { | ||
backend_comparison::bench_on_backend!(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
use backend_comparison::persistence::save; | ||
use burn::tensor::{ | ||
backend::Backend, module::conv_transpose3d, ops::ConvTransposeOptions, Distribution, Shape, | ||
Tensor, | ||
}; | ||
use burn_common::{ | ||
benchmark::{run_benchmark, Benchmark}, | ||
sync_type::SyncType, | ||
}; | ||
|
||
pub struct ConvTranspose3dBenchmark<B: Backend> { | ||
input_shape: Shape<5>, | ||
weight_shape: Shape<5>, | ||
bias_shape: Shape<1>, | ||
options: ConvTransposeOptions<3>, | ||
device: B::Device, | ||
} | ||
|
||
impl<B: Backend> Benchmark for ConvTranspose3dBenchmark<B> { | ||
type Args = (Tensor<B, 5>, Tensor<B, 5>, Tensor<B, 1>); | ||
|
||
fn name(&self) -> String { | ||
"conv_transpose3d".into() | ||
} | ||
|
||
fn shapes(&self) -> Vec<Vec<usize>> { | ||
vec![ | ||
self.input_shape.dims.into(), | ||
self.weight_shape.dims.into(), | ||
self.bias_shape.dims.into(), | ||
] | ||
} | ||
|
||
fn execute(&self, (x, w, b): Self::Args) { | ||
conv_transpose3d(x, w, Some(b), self.options.clone()); | ||
} | ||
|
||
fn prepare(&self) -> Self::Args { | ||
( | ||
Tensor::random( | ||
self.input_shape.clone(), | ||
Distribution::Default, | ||
&self.device, | ||
), | ||
Tensor::random( | ||
self.weight_shape.clone(), | ||
Distribution::Default, | ||
&self.device, | ||
), | ||
Tensor::random(self.bias_shape.clone(), Distribution::Default, &self.device), | ||
) | ||
} | ||
|
||
fn sync(&self) { | ||
B::sync(&self.device, SyncType::Wait) | ||
} | ||
} | ||
|
||
#[allow(dead_code)] | ||
fn bench<B: Backend>( | ||
device: &B::Device, | ||
feature_name: &str, | ||
url: Option<&str>, | ||
token: Option<&str>, | ||
) { | ||
// Shapes | ||
let batch_size = 16; | ||
let channels_in = 16; | ||
let channels_out = 16; | ||
let depth_in = 4; | ||
let height_in = 16; | ||
let width_in = 16; | ||
let kernel_size_0 = 8; | ||
let kernel_size_1 = 8; | ||
let kernel_size_2 = 8; | ||
|
||
// Options | ||
let strides = [1, 1, 1]; | ||
let padding = [0, 0, 0]; | ||
let padding_out = [0, 0, 0]; | ||
let dilations = [1, 1, 1]; | ||
let groups = 1; | ||
let options = ConvTransposeOptions::new(strides, padding, padding_out, dilations, groups); | ||
let benchmark = ConvTranspose3dBenchmark::<B> { | ||
input_shape: [batch_size, channels_in, depth_in, height_in, width_in].into(), | ||
weight_shape: [ | ||
channels_in, | ||
channels_out / groups, | ||
kernel_size_0, | ||
kernel_size_1, | ||
kernel_size_2, | ||
] | ||
.into(), | ||
bias_shape: [channels_out].into(), | ||
options, | ||
device: device.clone(), | ||
}; | ||
|
||
save::<B>( | ||
vec![run_benchmark(benchmark)], | ||
device, | ||
feature_name, | ||
url, | ||
token, | ||
) | ||
.unwrap(); | ||
} | ||
|
||
fn main() { | ||
backend_comparison::bench_on_backend!(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.