Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Algo: optimize algorithm code structure & add model training scripts #72

Merged
merged 1 commit into from
Oct 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
202 changes: 202 additions & 0 deletions algorithm/kapacity/metric/query.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
# Copyright 2023 The Kapacity Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import time

import pandas as pd
import grpc

from google.protobuf import timestamp_pb2, duration_pb2

import kapacity.metric.pb.metric_pb2 as metric_pb
import kapacity.metric.pb.provider_pb2 as provider_pb
import kapacity.metric.pb.provider_pb2_grpc as provider_pb_grpc


def fetch_metrics(addr, namespace, metric, scale_target, start, end):
metric_type = metric['type']
if metric_type == 'Resource':
return fetch_resource_metric_history(addr=addr,
namespace=namespace,
metric=metric,
scale_target=scale_target,
start=start,
end=end)
elif metric_type == 'ContainerResource':
return fetch_container_resource_metric_history(addr=addr,
namespace=namespace,
metric=metric,
scale_target=scale_target,
start=start,
end=end)
elif metric_type == 'Pods':
# TODO: support pods metric type
raise RuntimeError('UnsupportedMetricType')
elif metric_type == 'Object':
return fetch_object_metric_history(addr=addr,
namespace=namespace,
metric=metric,
start=start,
end=end)
elif metric_type == 'External':
return fetch_external_metric_history(addr=addr,
namespace=namespace,
metric=metric,
start=start,
end=end)
else:
raise RuntimeError('UnsupportedMetricType')


def compute_history_range(history_len):
now = time.time()
ago = now - (time_period_to_minutes(history_len) * 60)

start = timestamp_pb2.Timestamp()
start.FromSeconds(int(ago))
end = timestamp_pb2.Timestamp()
end.FromSeconds(int(now))
return start, end


def fetch_replicas_metric_history(addr, namespace, metric, scale_target, start, end):
external = metric['external']
metric_identifier = build_metric_identifier(external['metric'])
name, group_kind = get_obj_name_and_group_kind(scale_target)
workload_external = metric_pb.WorkloadExternalQuery(group_kind=group_kind,
namespace=namespace,
name=name,
metric=metric_identifier)
query = metric_pb.Query(type=metric_pb.WORKLOAD_EXTERNAL,
workload_external=workload_external)
return query_metrics(addr=addr, query=query, start=start, end=end)


def fetch_resource_metric_history(addr, namespace, metric, scale_target, start, end):
resource_name = metric['resource']['name']
name, group_kind = get_obj_name_and_group_kind(scale_target)
workload_resource = metric_pb.WorkloadResourceQuery(group_kind=group_kind,
namespace=namespace,
name=name,
resource_name=resource_name,
ready_pods_only=True)
query = metric_pb.Query(type=metric_pb.WORKLOAD_RESOURCE,
workload_resource=workload_resource)
return query_metrics(addr=addr, query=query, start=start, end=end)


def fetch_container_resource_metric_history(addr, namespace, metric, scale_target, start, end):
container_resource = metric['containerResource']
resource_name = container_resource['name']
container_name = container_resource['container']
name, group_kind = get_obj_name_and_group_kind(scale_target)
workload_container_resource = metric_pb.WorkloadContainerResourceQuery(group_kind=group_kind,
namespace=namespace,
name=name,
resource_name=resource_name,
container_name=container_name,
ready_pods_only=True)
query = metric_pb.Query(type=metric_pb.WORKLOAD_CONTAINER_RESOURCE,
workload_container_resource=workload_container_resource)
return query_metrics(addr=addr, query=query, start=start, end=end)


def fetch_object_metric_history(addr, namespace, metric, start, end):
obj = metric['object']
metric_identifier = build_metric_identifier(obj['metric'])
name, group_kind = get_obj_name_and_group_kind(obj['describedObject'])
object_query = metric_pb.ObjectQuery(namespace=namespace,
name=name,
group_kind=group_kind,
metric=metric_identifier)
query = metric_pb.Query(type=metric_pb.OBJECT,
object=object_query)
return query_metrics(addr=addr, query=query, start=start, end=end)


def fetch_external_metric_history(addr, namespace, metric, start, end):
external = metric['external']
metric_identifier = build_metric_identifier(external['metric'])
external_query = metric_pb.ExternalQuery(namespace=namespace,
metric=metric_identifier)
query = metric_pb.Query(type=metric_pb.EXTERNAL,
external=external_query)
return query_metrics(addr=addr, query=query, start=start, end=end)


def build_metric_identifier(metric):
metric_name, metric_selector = None, None
if 'name' in metric:
metric_name = metric['name']
elif 'selector' in metric:
metric_selector = metric['selector']
return metric_pb.MetricIdentifier(name=metric_name,
selector=metric_selector)


def get_obj_name_and_group_kind(obj):
name = obj['name']
group = obj['apiVersion'].split('/')[0]
kind = obj['kind']
return name, metric_pb.GroupKind(group=group, kind=kind)


def query_metrics(addr, query, start, end):
step = duration_pb2.Duration()
step.FromSeconds(60)
query_request = provider_pb.QueryRequest(query=query,
start=start,
end=end,
step=step)
with grpc.insecure_channel(addr) as channel:
stub = provider_pb_grpc.ProviderServiceStub(channel)
response = stub.Query(query_request)
return convert_metric_series_to_dataframe(response.series)


def convert_metric_series_to_dataframe(series):
dataframe = None
for item in series:
array = []
for point in item.points:
array.append([point.timestamp, point.value])
df = pd.DataFrame(array, columns=['timestamp', 'value'], dtype=float)
df['timestamp'] = df['timestamp'].map(lambda x: x / 1000).astype('int64')
if dataframe is not None:
# TODO: consider if it's possible to have multiple series
pd.merge(dataframe, df, how='left', on='timestamp')
else:
dataframe = df
return dataframe


def time_period_to_minutes(time_period):
minutes = 0
if time_period.find('D') != -1:
if len(time_period) == 1:
minutes = 24 * 60
else:
minutes = int(time_period.split('D')[0]) * 1440
elif time_period.find('H') != -1:
if len(time_period) == 1:
minutes = 60
else:
minutes = int(time_period.split('H')[0]) * 60
elif time_period.find('min') != -1:
if len(time_period) == 1:
minutes = 1
else:
minutes = int(time_period.split('min')[0])
return minutes
Loading
Loading