-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Algo: optimize algorithm code structure and add model training scripts
- Loading branch information
Showing
11 changed files
with
331 additions
and
187 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
# Copyright 2023 The Kapacity Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import time | ||
|
||
import pandas as pd | ||
import grpc | ||
|
||
from google.protobuf import timestamp_pb2, duration_pb2 | ||
|
||
import kapacity.metric.pb.metric_pb2 as metric_pb | ||
import kapacity.metric.pb.provider_pb2 as provider_pb | ||
import kapacity.metric.pb.provider_pb2_grpc as provider_pb_grpc | ||
|
||
|
||
def fetch_metrics(addr, namespace, metric, scale_target, start, end): | ||
metric_type = metric['type'] | ||
if metric_type == 'Resource': | ||
return fetch_resource_metric_history(addr=addr, | ||
namespace=namespace, | ||
metric=metric, | ||
scale_target=scale_target, | ||
start=start, | ||
end=end) | ||
elif metric_type == 'ContainerResource': | ||
return fetch_container_resource_metric_history(addr=addr, | ||
namespace=namespace, | ||
metric=metric, | ||
scale_target=scale_target, | ||
start=start, | ||
end=end) | ||
elif metric_type == 'Pods': | ||
# TODO: support pods metric type | ||
raise RuntimeError('UnsupportedMetricType') | ||
elif metric_type == 'Object': | ||
return fetch_object_metric_history(addr=addr, | ||
namespace=namespace, | ||
metric=metric, | ||
start=start, | ||
end=end) | ||
elif metric_type == 'External': | ||
return fetch_external_metric_history(addr=addr, | ||
namespace=namespace, | ||
metric=metric, | ||
start=start, | ||
end=end) | ||
else: | ||
raise RuntimeError('UnsupportedMetricType') | ||
|
||
|
||
def compute_history_range(history_len): | ||
now = time.time() | ||
ago = now - (time_period_to_minutes(history_len) * 60) | ||
|
||
start = timestamp_pb2.Timestamp() | ||
start.FromSeconds(int(ago)) | ||
end = timestamp_pb2.Timestamp() | ||
end.FromSeconds(int(now)) | ||
return start, end | ||
|
||
|
||
def fetch_replicas_metric_history(addr, namespace, metric, scale_target, start, end): | ||
external = metric['external'] | ||
metric_identifier = build_metric_identifier(external['metric']) | ||
name, group_kind = get_obj_name_and_group_kind(scale_target) | ||
workload_external = metric_pb.WorkloadExternalQuery(group_kind=group_kind, | ||
namespace=namespace, | ||
name=name, | ||
metric=metric_identifier) | ||
query = metric_pb.Query(type=metric_pb.WORKLOAD_EXTERNAL, | ||
workload_external=workload_external) | ||
return query_metrics(addr=addr, query=query, start=start, end=end) | ||
|
||
|
||
def fetch_resource_metric_history(addr, namespace, metric, scale_target, start, end): | ||
resource_name = metric['resource']['name'] | ||
name, group_kind = get_obj_name_and_group_kind(scale_target) | ||
workload_resource = metric_pb.WorkloadResourceQuery(group_kind=group_kind, | ||
namespace=namespace, | ||
name=name, | ||
resource_name=resource_name, | ||
ready_pods_only=True) | ||
query = metric_pb.Query(type=metric_pb.WORKLOAD_RESOURCE, | ||
workload_resource=workload_resource) | ||
return query_metrics(addr=addr, query=query, start=start, end=end) | ||
|
||
|
||
def fetch_container_resource_metric_history(addr, namespace, metric, scale_target, start, end): | ||
container_resource = metric['containerResource'] | ||
resource_name = container_resource['name'] | ||
container_name = container_resource['container'] | ||
name, group_kind = get_obj_name_and_group_kind(scale_target) | ||
workload_container_resource = metric_pb.WorkloadContainerResourceQuery(group_kind=group_kind, | ||
namespace=namespace, | ||
name=name, | ||
resource_name=resource_name, | ||
container_name=container_name, | ||
ready_pods_only=True) | ||
query = metric_pb.Query(type=metric_pb.WORKLOAD_CONTAINER_RESOURCE, | ||
workload_container_resource=workload_container_resource) | ||
return query_metrics(addr=addr, query=query, start=start, end=end) | ||
|
||
|
||
def fetch_object_metric_history(addr, namespace, metric, start, end): | ||
obj = metric['object'] | ||
metric_identifier = build_metric_identifier(obj['metric']) | ||
name, group_kind = get_obj_name_and_group_kind(obj['describedObject']) | ||
object_query = metric_pb.ObjectQuery(namespace=namespace, | ||
name=name, | ||
group_kind=group_kind, | ||
metric=metric_identifier) | ||
query = metric_pb.Query(type=metric_pb.OBJECT, | ||
object=object_query) | ||
return query_metrics(addr=addr, query=query, start=start, end=end) | ||
|
||
|
||
def fetch_external_metric_history(addr, namespace, metric, start, end): | ||
external = metric['external'] | ||
metric_identifier = build_metric_identifier(external['metric']) | ||
external_query = metric_pb.ExternalQuery(namespace=namespace, | ||
metric=metric_identifier) | ||
query = metric_pb.Query(type=metric_pb.EXTERNAL, | ||
external=external_query) | ||
return query_metrics(addr=addr, query=query, start=start, end=end) | ||
|
||
|
||
def build_metric_identifier(metric): | ||
metric_name, metric_selector = None, None | ||
if 'name' in metric: | ||
metric_name = metric['name'] | ||
elif 'selector' in metric: | ||
metric_selector = metric['selector'] | ||
return metric_pb.MetricIdentifier(name=metric_name, | ||
selector=metric_selector) | ||
|
||
|
||
def get_obj_name_and_group_kind(obj): | ||
name = obj['name'] | ||
group = obj['apiVersion'].split('/')[0] | ||
kind = obj['kind'] | ||
return name, metric_pb.GroupKind(group=group, kind=kind) | ||
|
||
|
||
def query_metrics(addr, query, start, end): | ||
step = duration_pb2.Duration() | ||
step.FromSeconds(60) | ||
query_request = provider_pb.QueryRequest(query=query, | ||
start=start, | ||
end=end, | ||
step=step) | ||
with grpc.insecure_channel(addr) as channel: | ||
stub = provider_pb_grpc.ProviderServiceStub(channel) | ||
response = stub.Query(query_request) | ||
return convert_metric_series_to_dataframe(response.series) | ||
|
||
|
||
def convert_metric_series_to_dataframe(series): | ||
dataframe = None | ||
for item in series: | ||
array = [] | ||
for point in item.points: | ||
array.append([point.timestamp, point.value]) | ||
df = pd.DataFrame(array, columns=['timestamp', 'value'], dtype=float) | ||
df['timestamp'] = df['timestamp'].map(lambda x: x / 1000).astype('int64') | ||
if dataframe is not None: | ||
# TODO: consider if it's possible to have multiple series | ||
pd.merge(dataframe, df, how='left', on='timestamp') | ||
else: | ||
dataframe = df | ||
return dataframe | ||
|
||
|
||
def time_period_to_minutes(time_period): | ||
minutes = 0 | ||
if time_period.find('D') != -1: | ||
if len(time_period) == 1: | ||
minutes = 24 * 60 | ||
else: | ||
minutes = int(time_period.split('D')[0]) * 1440 | ||
elif time_period.find('H') != -1: | ||
if len(time_period) == 1: | ||
minutes = 60 | ||
else: | ||
minutes = int(time_period.split('H')[0]) * 60 | ||
elif time_period.find('min') != -1: | ||
if len(time_period) == 1: | ||
minutes = 1 | ||
else: | ||
minutes = int(time_period.split('min')[0]) | ||
return minutes |
Oops, something went wrong.