📊 Computation and processing of models' parameters
-
Updated
Nov 27, 2024 - R
📊 Computation and processing of models' parameters
Tidy data frames and expressions with statistical summaries 📜
Robust freeform surface modeling from user 2d sketches.
Flexible Statistics and Data Analysis (FSDA) extends MATLAB for a robust analysis of data sets affected by different sources of heterogeneity. It is open source software licensed under the European Union Public Licence (EUPL). FSDA is a joint project by the University of Parma and the Joint Research Centre of the European Commission.
Robust statistics in Python
📦 Non-parametric Causal Effects Based on Modified Treatment Policies 🔮
This Python library implements Trimmed Match for analyzing randomized paired geo experiments and also implements Trimmed Match Design for designing randomized paired geo experiments.
Python PyTorch (GPU) and NumPy (CPU)-based port of Févotte and Dobigeon's robust-NMF algorithm appearing in "Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization."
Robustats is a Python library for high-performance computation of robust statistical estimators.
Direct and robust methods for outlier detection in linear regression
A small collection of lesser-known statistical measures
Solve many kinds of least-squares and matrix-recovery problems
Robust estimations from distribution structures: Mean.
Robust estimations from distribution structures: Invariant moments.
Interpretable and model-robust causal inference for heterogeneous treatment effects using generalized linear working models with targeted machine-learning
Delicatessen: the Python one-stop sandwich (variance) shop 🥪
Defending Against Backdoor Attacks Using Robust Covariance Estimation
Robust Gaussian Process with Iterative Trimming
Companion package to the 2nd edition of the book "Robust Statistics: Theory and Methods"
📦 🎲 R/txshift: Efficient Estimation of the Causal Effects of Stochastic Interventions, with Corrections for Outcome-Dependent Sampling
Add a description, image, and links to the robust-statistics topic page so that developers can more easily learn about it.
To associate your repository with the robust-statistics topic, visit your repo's landing page and select "manage topics."