-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from tomaskourim/presentation
Presentation
- Loading branch information
Showing
6 changed files
with
73 additions
and
60 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file modified
BIN
+267 KB
(150%)
paper/presentation/A model of random walk with varying transition probabilities.pdf
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,10 +12,10 @@ | |
\usecolortheme{beaver} | ||
|
||
|
||
\title{A model of random walk with varying transition probabilities} | ||
\institute[FNSPE CTU]{\inst{1} Faculty of Nuclear Sciences and Physical Engineering, CTU Prague \and | ||
\title{A Model of a Random Walk with Varying Transition Probabilities} | ||
\institute[Tomáš Kouřim ([email protected])]{\inst{1} Faculty of Nuclear Sciences and Physical Engineering, CTU Prague \and | ||
\inst{2} Institute of Information Theory and Automation, CAS CR Prague} | ||
%\date{16.9.2019} | ||
\date{SMTDA 2020} | ||
\author[Tomáš~Kouřim]{Tomáš~Kouřim \inst{1} \and Petr Volf \inst{2}} | ||
\newcommand{\nologo}{\setbeamertemplate{logo}{}} % command to set the logo to nothing | ||
\setbeamertemplate{itemize item}[circle] | ||
|
@@ -26,13 +26,7 @@ | |
\begin{document} | ||
\maketitle | ||
|
||
\begin{frame}{Outline} | ||
\begin{enumerate} | ||
\item<1-> {\Large{}Motivation}\bigskip{} | ||
\item<2-> {\Large{}Model description}\bigskip{} | ||
\item<3-> {\Large{}Model application} | ||
\end{enumerate} | ||
\end{frame} | ||
\section{Motivation}\label{sec:motivation} | ||
|
||
\begin{frame}{Random walk} | ||
\begin{definition} | ||
|
@@ -52,6 +46,10 @@ | |
\end{definition} | ||
\end{frame} | ||
|
||
\begin{frame}{Motivation - Random process with varying probability} | ||
\includegraphics[width=1\textwidth]{../../simulations/probability_25_steps_type_success_punished_two_lambdas} | ||
\end{frame} | ||
|
||
\begin{frame}{Motivation} | ||
\begin{itemize} | ||
\item Failure of a machine | ||
|
@@ -72,27 +70,32 @@ | |
\end{itemize} | ||
\end{frame} | ||
|
||
\begin{frame}{Motivation - Random process with varying probability} | ||
\includegraphics[width=1\textwidth]{../../simulations/probability_dots_25_steps_type_success_punished_two_lambdas} | ||
\end{frame} | ||
|
||
\section{Model description}\label{sec:model-description} | ||
\begin{frame}{Random walk with varying probabilities} | ||
\begin{itemize} | ||
\item Random walk with memory | ||
\item Memory coefficient $\lambda\in(0,\,1)$ affecting the transition probabilities | ||
\item First step of the walk $X_{1}$ depends on an initial transition probability $p_{0}$ | ||
\item Further steps depend on a transition probability $p_{t}$ evolving as | ||
\onslide<2->\begin{flalign*} | ||
X_{t-1} & =1\rightarrow p_{t}=\lambda p_{t-1} & | ||
X_{t-1} & =-1\rightarrow p_{t}=1-\lambda(1-p_{t-1}) & | ||
\item<1-> Random walk with memory based the on standard Bernoulli random walk | ||
\item<2-> Given starting probability $p_0$ | ||
\item<3-> $X_t\in\{-1,1\}$ with $X_t \sim {\textrm{Bernoulli} }(p_{t-1})$ | ||
\item<4-> Memory coefficient $\lambda\in(0,\,1)$ affecting the development of probabilities $p_{t}$ as | ||
\onslide<4->\begin{flalign*} | ||
X_{t} & =1\rightarrow p_{t}=\lambda p_{t-1} & | ||
X_{t} & =-1\rightarrow p_{t}=1-\lambda(1-p_{t-1}) & | ||
\end{flalign*} | ||
\vspace{-5mm} | ||
\begin{itemize} | ||
\item[-->]<3-> ``Success punished'' | ||
\item[-->]<5-> ``Success punishing'' | ||
\end{itemize} | ||
\onslide<4->\begin{flalign*} | ||
X_{t-1}&=1\rightarrow p_{t}=1-\lambda(1-p_{t-1})& | ||
X_{t-1}&=-1\rightarrow p_{t}=\lambda p_{t-1}& | ||
\onslide<6->\begin{flalign*} | ||
X_{t}&=1\rightarrow p_{t}=1-\lambda(1-p_{t-1})& | ||
X_{t}&=-1\rightarrow p_{t}=\lambda p_{t-1}& | ||
\end{flalign*} | ||
\vspace{-5mm} | ||
\begin{itemize} | ||
\item[-->]<5-> ``Success rewarded'' | ||
\item[-->]<6-> ``Success rewarding'' | ||
\end{itemize} | ||
\end{itemize} | ||
\end{frame} | ||
|
@@ -174,17 +177,20 @@ | |
\end{frame} | ||
|
||
\begin{frame}{Success rewarding model} | ||
\onslide<2-> | ||
\begin{flalign*} | ||
EX_{t} & =2p_{0}-1 & | ||
\end{flalign*} | ||
\vspace{-8mm} | ||
\begin{flalign*} | ||
Var\,X_{t} & =4p_{0}(1-p_{0}) & | ||
\end{flalign*} | ||
\onslide<1-> | ||
\begin{flalign*} | ||
EP_{t} & =p_{0} & | ||
\end{flalign*} | ||
\vspace{-8mm} | ||
\onslide<2-> | ||
\begin{flalign*} | ||
Var\,P_{t} & =(2\lambda-\lambda^{2})^{t}p_{0}^{2}+p_{0}(1-\lambda)^{2}\sum_{i=0}^{t-1}(2\lambda-\lambda^{2})^{i}-p_{0}^{2} & | ||
\end{flalign*} | ||
|
@@ -197,9 +203,9 @@ | |
\end{flalign*} | ||
\end{frame} | ||
|
||
\begin{frame}{Two-parameter model} | ||
\begin{frame}{More complex models} | ||
\begin{itemize} | ||
\item Two $\lambda$ parameters each affecting one direction of the walk | ||
\item Two memory coefficients $\lambda$ each affecting one direction of the walk | ||
\item Again two variants -- success punishing and success rewarding | ||
\onslide<2->\begin{flalign*} | ||
X_{t-1} & =1\rightarrow p_{t}=\lambda_{0} p_{t-1} & | ||
|
@@ -217,45 +223,47 @@ | |
\begin{itemize} | ||
\item[-->]<3-> ``Two-parameter success rewarding model'' | ||
\end{itemize} | ||
\item<4-> $M$ steps, $\lambda(t)$, $n$-dimensional walk | ||
\end{itemize} | ||
\end{frame} | ||
|
||
\begin{frame}{Example - two-parameter success punishing model} | ||
\includegraphics[width=1\textwidth]{../../simulations/single_walk_1000_steps_type_success_punished_two_lambdas} | ||
\end{frame} | ||
|
||
\section{Model application}\label{sec:model-application} | ||
\begin{frame}{Model fitting} | ||
\begin{enumerate} | ||
\item Find $\overrightarrow{\lambda}$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\overrightarrow{\lambda}$, model type | ||
\item Find $p_{0},\,\overrightarrow{\lambda}$ with known model type | ||
\item Find model type without any prior knowledge | ||
\item Find $\lambda$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\lambda$, model type | ||
\item Find $p_{0},\,\lambda$ with known model type | ||
\item Find model type and all parameters without any prior knowledge | ||
\end{enumerate} | ||
\end{frame} | ||
|
||
\begin{frame}{Model fitting} | ||
\begin{enumerate} | ||
\item Find $\overrightarrow{\lambda}$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\overrightarrow{\lambda}$, model type | ||
\item Find $p_{0},\,\overrightarrow{\lambda}$ with known model type | ||
\item Find $\lambda$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\lambda$, model type | ||
\item Find $p_{0},\,\lambda$ with known model type | ||
\begin{itemize} | ||
\item Using maximal likelihood estimate \& numerical optimization | ||
\item (1-3) maximal likelihood estimate \& numerical optimization | ||
\end{itemize} | ||
\item Find model type without any prior knowledge | ||
\item Find model type and all parameters without any prior knowledge | ||
\end{enumerate} | ||
\end{frame} | ||
|
||
\begin{frame}{Model fitting} | ||
\begin{enumerate} | ||
\item Find $\overrightarrow{\lambda}$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\overrightarrow{\lambda}$, model type | ||
\item Find $p_{0},\,\overrightarrow{\lambda}$ with known model type | ||
\item Find $\lambda$ with known $p_{0}$, model type | ||
\item Find $p_{0}$ with known $\lambda$, model type | ||
\item Find $p_{0},\,\lambda$ with known model type | ||
\begin{itemize} | ||
\item Using maximal likelihood estimate \& numerical optimization | ||
\item (1-3) maximal likelihood estimate \& numerical optimization | ||
\end{itemize} | ||
\item Find model type without any prior knowledge | ||
\item Find model type and all parameters without any prior knowledge | ||
\begin{itemize} | ||
\item Using Akaike information criterion \& numerical optimization | ||
\item (4) Akaike information criterion \& numerical optimization | ||
\end{itemize} | ||
\end{enumerate} | ||
\end{frame} | ||
|
@@ -266,10 +274,10 @@ | |
\item Model trained on 2009--2018 men Grand Slam tournaments | ||
\item<2-> Model applied on 2019 US Open | ||
\begin{itemize} | ||
\item<2-> Live betting against bookmaker | ||
\item<2-> $0.52$ units total necessary bankroll | ||
\item<2-> $2.24$ units total profit $\rightarrow$ $430\%$ ROI | ||
\item<3-> Only 128 bets placed | ||
\item<3-> Live betting against bookmaker | ||
\item<4-> Bankroll: $52$ units | ||
\item<5-> Profit: $224$ units $\rightarrow$ $430\%$ ROI | ||
\item<6-> Only 128 bets placed | ||
\end{itemize} | ||
\end{itemize} | ||
\end{frame} | ||
|
@@ -278,8 +286,8 @@ | |
\begin{itemize} | ||
\item A specific model of a random walk with memory | ||
\item Model properties derived | ||
\item Application shows big future potential of the model | ||
\item Possible applications in a set of real life scenarios | ||
\item Initial results show big potential of the model | ||
\end{itemize} | ||
\end{frame} | ||
|
||
|
Binary file added
BIN
+9.97 KB
simulations/probability_25_steps_type_success_punished_two_lambdas.pdf
Binary file not shown.
Binary file added
BIN
+10.3 KB
simulations/probability_dots_25_steps_type_success_punished_two_lambdas.pdf
Binary file not shown.