Skip to content

toandaominh1997/pytoan

Repository files navigation

Library of pytoan

Introduction

Installing

pip install pytoan

Usage

  1. Example model with MNIST
from pytoan.pytorch import Learning
import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from pathlib import Path

# Hyper parameters
num_classes = 10
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True,
                                           pin_memory=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False,
                                          pin_memory=True)

class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

def accuracy_score(output, target):
    with torch.no_grad():
        pred = torch.argmax(output, dim=1)
        assert pred.shape[0] == len(target)
        correct = 0
        correct += torch.sum(pred == target).item()
    return correct / len(target)

model = ConvNet(num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
metric_ftns = [accuracy_score]
device = [0]
num_epoch = 100
gradient_clipping = 0.1
gradient_accumulation_steps = 1
early_stopping = 10
validation_frequency = 1
tensorboard = True
checkpoint_dir = Path('./', type(model).__name__)
checkpoint_dir.mkdir(exist_ok=True, parents=True)
resume_path = None
learning = Learning(model=model,
                    criterion=criterion,
                    optimizer=optimizer,
                    scheduler = scheduler,
                    metric_ftns=metric_ftns,
                    device=device,
                    num_epoch=num_epoch,
                    grad_clipping = gradient_clipping,
                    grad_accumulation_steps = gradient_accumulation_steps,
                    early_stopping = early_stopping,
                    validation_frequency = validation_frequency,
                    tensorboard = tensorboard,
                    checkpoint_dir = checkpoint_dir,
                    resume_path=resume_path)
  1. For Training and Validation
learning.train(train_loader, test_loader)

Log:

MNIST_EXAMPLE

  1. For Testing
learning.test(test_loader) # but not complete

Releases

No releases published

Packages

No packages published