Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature vertical flux #102

Closed
wants to merge 16 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/draft-pdf.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ jobs:
# This should be the path to the paper within your repo.
paper-path: paper.md
- name: Upload
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v3
with:
name: paper
# This is the output path where Pandoc will write the compiled
Expand Down
1 change: 1 addition & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
html_theme_path = ["_themes", ]

# Theme options are theme-specific and customize the look and feel of a
# theme further. For a list of options available for each theme, see the
Expand Down
5 changes: 4 additions & 1 deletion docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,7 @@ torch
scipy
matplotlib
tifffile
myst_parser
myst_parser
sphinx==5.3.0
sphinx_rtd_theme==1.1.1
readthedocs-sphinx-search==0.1.1
44 changes: 27 additions & 17 deletions taufactor/taufactor.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,7 @@ def __init__(self, img, bc=(-0.5, 0.5), D_0=1, device=torch.device('cuda')):
f'Input image must only contain 0s and 1s. Your image must be segmented to use this tool. If your image has been segmented, ensure your labels are 0 for non-conductive and 1 for conductive phase. Your image has the following labels: {torch.unique(img).numpy()}. If you have more than one conductive phase, use the multi-phase solver.')

# calculate
self.ph_bot = torch.sum(img[:, -1]).to(self.device) * self.bot_bc
self.ph_top = torch.sum(img[:, 0]).to(self.device) * self.top_bc

# init conc
self.conc = self.init_conc(img)
# create nn map
Expand Down Expand Up @@ -137,7 +136,7 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2):

with torch.no_grad():
start = timer()
while not self.converged:
while not self.converged and self.iter < iter_limit:
# find sum of all nearest neighbours
out = self.conc[:, 2:, 1:-1, 1:-1] + \
self.conc[:, :-2, 1:-1, 1:-1] + \
Expand All @@ -149,8 +148,7 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2):
out /= self.nn
# check convergence using criteria
if self.iter % 100 == 0:
self.converged = self.check_convergence(
verbose, conv_crit, start, iter_limit)
self.converged = self.check_convergence(verbose, conv_crit)
# efficient way of adding flux to old conc with overrelaxation
out -= self.crop(self.conc, 1)
out *= self.cb[self.iter % 2]
Expand All @@ -161,7 +159,7 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2):
self.end_simulation(iter_limit, verbose, start)
return self.tau

def check_convergence(self, verbose, conv_crit, start, iter_limit):
def check_convergence(self, verbose, conv_crit):
# print progress
self.semi_converged, self.new_fl, err = self.check_vertical_flux(
conv_crit)
Expand Down Expand Up @@ -192,13 +190,18 @@ def check_convergence(self, verbose, conv_crit, start, iter_limit):
self.old_fl = self.new_fl
return False

def check_vertical_flux(self, conv_crit):
def calc_vertical_flux(self):
'''Calculates the vertical flux through the volume'''
vert_flux = self.conc[:, 1:-1, 1:-1, 1:-1] - \
self.conc[:, :-2, 1:-1, 1:-1]
vert_flux[self.conc[:, :-2, 1:-1, 1:-1] == 0] = 0
vert_flux[self.conc[:, 1:-1, 1:-1, 1:-1] == 0] = 0
return vert_flux

def check_vertical_flux(self, conv_crit):
vert_flux = self.calc_vertical_flux()
fl = torch.sum(vert_flux, (0, 2, 3))[1:-1]
err = (fl.max() - fl.min())*2/(fl.max() + fl.min())
err = (fl.max() - fl.min())/(fl.max())
if fl.min() == 0:
return 'zero_flux', torch.mean(fl), err
if err < conv_crit or torch.isnan(err).item():
Expand Down Expand Up @@ -276,8 +279,7 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2, D_0=1):
out = out[:, 2:-2]
out /= self.nn
if self.iter % 50 == 0:
self.converged = self.check_convergence(
verbose, conv_crit, start, iter_limit)
self.converged = self.check_convergence(verbose, conv_crit)
out -= self.conc[:, 2:-2]
out *= self.cb[self.iter % 2]
self.conc[:, 2:-2] += out
Expand All @@ -288,10 +290,15 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2, D_0=1):
self.end_simulation(iter_limit, verbose, start)
return self.tau

def check_vertical_flux(self, conv_crit):
def calc_vertical_flux(self):
'''Calculates the vertical flux through the volume'''
vert_flux = abs(self.conc - torch.roll(self.conc, 1, 1))
vert_flux[self.conc == 0] = 0
vert_flux[torch.roll(self.conc, 1, 1) == 0] = 0
return vert_flux

def check_vertical_flux(self, conv_crit):
vert_flux = self.calc_vertical_flux()
fl = torch.sum(vert_flux, (0, 2, 3))[3:-2]
err = (fl.max() - fl.min())*2/(fl.max() + fl.min())
if err < conv_crit or torch.isnan(err).item():
Expand Down Expand Up @@ -342,8 +349,7 @@ def __init__(self, img, cond={1: 1}, bc=(-0.5, 0.5), device=torch.device('cuda:0
img = torch.tensor(img, dtype=self.precision, device=self.device)

# calculate
self.ph_bot = torch.sum(img[:, -1]).to(self.device) * self.bot_bc
self.ph_top = torch.sum(img[:, 0]).to(self.device) * self.top_bc

# init conc
self.conc = self.init_conc(img)
# create nn map
Expand Down Expand Up @@ -441,16 +447,15 @@ def solve(self, iter_limit=5000, verbose=True, conv_crit=2*10**-2):
self.pre_factors[5][:, 1:-1, 1:-1, :-2]
out /= self.nn
if self.iter % 20 == 0:
self.converged = self.check_convergence(
verbose, conv_crit, start, iter_limit)
self.converged = self.check_convergence(verbose, conv_crit)
out -= self.crop(self.conc, 1)
out *= self.cb[self.iter % 2]
self.conc[:, 1:-1, 1:-1, 1:-1] += out

self.end_simulation(iter_limit, verbose, start)
return self.tau

def check_convergence(self, verbose, conv_crit, start, iter_limit):
def check_convergence(self, verbose, conv_crit):
# print progress
if self.iter % 100 == 0:
self.semi_converged, self.new_fl, err = self.check_vertical_flux(
Expand Down Expand Up @@ -491,10 +496,15 @@ def check_convergence(self, verbose, conv_crit, start, iter_limit):

return False

def check_vertical_flux(self, conv_crit):
def calc_vertical_flux(self):
'''Calculates the vertical flux through the volume'''
vert_flux = (self.conc[:, 1:-1, 1:-1, 1:-1] - self.conc[:,
:-2, 1:-1, 1:-1]) * self.pre_factors[1][:, :-2, 1:-1, 1:-1]
vert_flux[self.nn == torch.inf] = 0
return vert_flux

def check_vertical_flux(self, conv_crit):
vert_flux = self.calc_vertical_flux()
fl = torch.sum(vert_flux, (0, 2, 3))[2:-2]
err = (fl.max() - fl.min())*2/(fl.max() + fl.min())
if err < conv_crit or torch.isnan(err).item():
Expand Down
Loading