SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss (IEEE ACCESS) [Link]
Tensorflow based keras implementation of "SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss"
- Clone thos repository
git clone https://github.com/tiruss/Salient_Code.git
- You can install all the dependencies by
pip install -r requirements.txt
-
Download training datasets [DUTS-TR] from the link
-
Download [HKU-IS] for test from the link
-
Other datasets can download from the link [sal_eval_toolbox] Thank you for the awesome evaluation toolbox!
-
Download pretrained weight from the link
-
[Google drive] [Baidu drive] Baidu drive will be updated soon.
-
Run test.py
python test.py --weight [pretrained weight] --input_dir [test_img_dir] --output_folder "outputs"
-
Pre-computed salinecy maps can download from the link
-
[Google drive] [Baidu drive] Baidu drive will be updated soon.
-
DUTS-TR is our traning set for pair comparison
-
Run train.py
python train.py --img_folder [DUTS-TR img dir] --label_folder [DUTS-TR label dir] --epoch --batch_size --num_gpu
@ARTICLE{9107080,
author={D. {Kang} and S. {Park} and J. {Paik}},
journal={IEEE Access},
title={SdBAN: Salient Object Detection Using Bilateral Attention Network With Dice Coefficient Loss},
year={2020},
volume={8},
number={},
pages={104357-104370},}