-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into feature_selection
- Loading branch information
Showing
16 changed files
with
2,507 additions
and
401 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
from etna import SETTINGS | ||
|
||
if SETTINGS.torch_required: | ||
from etna.models.nn.nbeats.nbeats import NBeatsGenericModel | ||
from etna.models.nn.nbeats.nbeats import NBeatsInterpretableModel |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
|
||
from etna import SETTINGS | ||
|
||
if SETTINGS.torch_required: | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class NBeatsBlock(nn.Module): | ||
"""Base N-BEATS block which takes a basis function as an argument.""" | ||
|
||
def __init__(self, input_size: int, theta_size: int, basis_function: "nn.Module", num_layers: int, layer_size: int): | ||
"""N-BEATS block. | ||
Parameters | ||
---------- | ||
input_size: | ||
In-sample size. | ||
theta_size: | ||
Number of parameters for the basis function. | ||
basis_function: | ||
Basis function which takes the parameters and produces backcast and forecast. | ||
num_layers: | ||
Number of layers. | ||
layer_size | ||
Layer size. | ||
""" | ||
super().__init__() | ||
|
||
layers = [nn.Linear(in_features=input_size, out_features=layer_size), nn.ReLU()] | ||
for _ in range(num_layers - 1): | ||
layers.append(nn.Linear(in_features=layer_size, out_features=layer_size)) | ||
layers.append(nn.ReLU()) | ||
|
||
self.layers = nn.ModuleList(layers) | ||
|
||
self.basis_parameters = nn.Linear(in_features=layer_size, out_features=theta_size) | ||
self.basis_function = basis_function | ||
|
||
def forward(self, x: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor"]: | ||
"""Forward pass. | ||
Parameters | ||
---------- | ||
x: | ||
Input data. | ||
Returns | ||
------- | ||
: | ||
Tuple with backcast and forecast. | ||
""" | ||
for layer in self.layers: | ||
x = layer(x) | ||
|
||
basis_parameters = self.basis_parameters(x) | ||
return self.basis_function(basis_parameters) | ||
|
||
|
||
class GenericBasis(nn.Module): | ||
"""Generic basis function.""" | ||
|
||
def __init__(self, backcast_size: int, forecast_size: int): | ||
"""Initialize generic basis function. | ||
Parameters | ||
---------- | ||
backcast_size: | ||
Number of backcast values. | ||
forecast_size: | ||
Number of forecast values. | ||
""" | ||
super().__init__() | ||
self.backcast_size = backcast_size | ||
self.forecast_size = forecast_size | ||
|
||
def forward(self, theta: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor"]: | ||
"""Forward pass. | ||
Parameters | ||
---------- | ||
theta: | ||
Basis function parameters. | ||
Returns | ||
------- | ||
: | ||
Tuple with backcast and forecast. | ||
""" | ||
return theta[:, : self.backcast_size], theta[:, -self.forecast_size :] | ||
|
||
|
||
class TrendBasis(nn.Module): | ||
"""Polynomial trend basis function.""" | ||
|
||
def __init__(self, degree: int, backcast_size: int, forecast_size: int): | ||
"""Initialize trend basis function. | ||
Parameters | ||
---------- | ||
degree: | ||
Degree of polynomial for trend modeling. | ||
backcast_size: | ||
Number of backcast values. | ||
forecast_size: | ||
Number of forecast values. | ||
""" | ||
super().__init__() | ||
self.num_poly_terms = degree + 1 | ||
|
||
self.backcast_time = nn.Parameter(self._trend_tensor(size=backcast_size), requires_grad=False) | ||
self.forecast_time = nn.Parameter(self._trend_tensor(size=forecast_size), requires_grad=False) | ||
|
||
def _trend_tensor(self, size: int) -> "torch.Tensor": | ||
"""Prepare trend tensor.""" | ||
time = torch.arange(size) / size | ||
degrees = torch.arange(self.num_poly_terms) | ||
trend_tensor = torch.transpose(time[:, None] ** degrees[None], 0, 1) | ||
return trend_tensor | ||
|
||
def forward(self, theta: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor"]: | ||
"""Forward pass. | ||
Parameters | ||
---------- | ||
theta: | ||
Basis function parameters. | ||
Returns | ||
------- | ||
: | ||
Tuple with backcast and forecast. | ||
""" | ||
backcast = theta[:, : self.num_poly_terms] @ self.backcast_time | ||
forecast = theta[:, self.num_poly_terms :] @ self.forecast_time | ||
return backcast, forecast | ||
|
||
|
||
class SeasonalityBasis(nn.Module): | ||
"""Harmonic seasonality basis function.""" | ||
|
||
def __init__(self, harmonics: int, backcast_size: int, forecast_size: int): | ||
"""Initialize seasonality basis function. | ||
Parameters | ||
---------- | ||
harmonics: | ||
Harmonics range. | ||
backcast_size: | ||
Number of backcast values. | ||
forecast_size: | ||
Number of forecast values. | ||
""" | ||
super().__init__() | ||
|
||
freq = torch.arange(harmonics - 1, harmonics / 2 * forecast_size) / harmonics | ||
freq[0] = 0.0 | ||
frequency = torch.unsqueeze(freq, 0) | ||
|
||
backcast_grid = -2 * np.pi * torch.arange(backcast_size)[:, None] / forecast_size | ||
backcast_grid = backcast_grid * frequency | ||
|
||
forecast_grid = 2 * np.pi * torch.arange(forecast_size)[:, None] / forecast_size | ||
forecast_grid = forecast_grid * frequency | ||
|
||
self.backcast_cos_template = nn.Parameter(torch.transpose(torch.cos(backcast_grid), 0, 1), requires_grad=False) | ||
self.backcast_sin_template = nn.Parameter(torch.transpose(torch.sin(backcast_grid), 0, 1), requires_grad=False) | ||
self.forecast_cos_template = nn.Parameter(torch.transpose(torch.cos(forecast_grid), 0, 1), requires_grad=False) | ||
self.forecast_sin_template = nn.Parameter(torch.transpose(torch.sin(forecast_grid), 0, 1), requires_grad=False) | ||
|
||
def forward(self, theta: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor"]: | ||
"""Forward pass. | ||
Parameters | ||
---------- | ||
theta: | ||
Basis function parameters. | ||
Returns | ||
------- | ||
: | ||
Tuple with backcast and forecast. | ||
""" | ||
params_per_harmonic = theta.shape[1] // 4 | ||
|
||
backcast_harmonics_cos = theta[:, :params_per_harmonic] @ self.backcast_cos_template | ||
backcast_harmonics_sin = theta[:, params_per_harmonic : 2 * params_per_harmonic] @ self.backcast_sin_template | ||
backcast = backcast_harmonics_sin + backcast_harmonics_cos | ||
|
||
forecast_harmonics_cos = ( | ||
theta[:, 2 * params_per_harmonic : 3 * params_per_harmonic] @ self.forecast_cos_template | ||
) | ||
forecast_harmonics_sin = theta[:, 3 * params_per_harmonic :] @ self.forecast_sin_template | ||
forecast = forecast_harmonics_sin + forecast_harmonics_cos | ||
|
||
return backcast, forecast | ||
|
||
|
||
class NBeats(nn.Module): | ||
"""N-BEATS model.""" | ||
|
||
def __init__(self, blocks: "nn.ModuleList"): | ||
"""Initialize N-BEATS model. | ||
Parameters | ||
---------- | ||
blocks: | ||
Model blocks. | ||
""" | ||
super().__init__() | ||
self.blocks = blocks | ||
|
||
def forward(self, x: "torch.Tensor", input_mask: "torch.Tensor") -> "torch.Tensor": | ||
"""Forward pass. | ||
Parameters | ||
---------- | ||
x: | ||
Input data. | ||
input_mask: | ||
Input mask. | ||
Returns | ||
------- | ||
: | ||
Forecast tensor. | ||
""" | ||
residuals = x.flip(dims=(1,)) | ||
input_mask = input_mask.flip(dims=(1,)) | ||
forecast = x[:, -1:] | ||
|
||
for block in self.blocks: | ||
backcast, block_forecast = block(residuals) | ||
residuals = (residuals - backcast) * input_mask | ||
forecast = forecast + block_forecast | ||
|
||
return forecast |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
from enum import Enum | ||
|
||
import numpy as np | ||
|
||
from etna import SETTINGS | ||
|
||
if SETTINGS.torch_required: | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class NBeatsSMAPE(nn.Module): | ||
"""SMAPE with mask.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, y_true: "torch.Tensor", y_pred: "torch.Tensor", mask: "torch.Tensor") -> "torch.Tensor": | ||
"""Compute metric. | ||
Parameters | ||
---------- | ||
y_true: | ||
True target. | ||
y_pred: | ||
Predicted target. | ||
mask: | ||
Binary mask that denotes which points are valid forecasts. | ||
Returns | ||
------- | ||
: | ||
Metric value. | ||
""" | ||
ae = torch.abs(y_true - y_pred) | ||
sape = ae / (torch.abs(y_true) + torch.abs(y_pred)) | ||
|
||
# TODO: perhaps there is a better way to handle invalid values | ||
sape[sape != sape] = 0.0 | ||
sape[sape == np.inf] = 0.0 | ||
|
||
return 200.0 * torch.mean(sape * mask) | ||
|
||
|
||
class NBeatsMAPE(nn.Module): | ||
"""MAPE with mask.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, y_true: "torch.Tensor", y_pred: "torch.Tensor", mask: "torch.Tensor") -> "torch.Tensor": | ||
"""Compute metric. | ||
Parameters | ||
---------- | ||
y_true: | ||
True target. | ||
y_pred: | ||
Predicted target. | ||
mask: | ||
Binary mask that denotes which points are valid forecasts. | ||
Returns | ||
------- | ||
: | ||
Metric value. | ||
""" | ||
ape = torch.abs(y_true - y_pred) / torch.abs(y_true) | ||
|
||
# TODO: perhaps there is a better way to handle invalid values | ||
ape[ape != ape] = 0.0 | ||
ape[ape == np.inf] = 0.0 | ||
|
||
return 100.0 * torch.mean(ape * mask) | ||
|
||
|
||
class NBeatsMAE(nn.Module): | ||
"""MAE with mask.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, y_true: "torch.Tensor", y_pred: "torch.Tensor", mask: "torch.Tensor") -> "torch.Tensor": | ||
"""Compute metric. | ||
Parameters | ||
---------- | ||
y_true: | ||
True target. | ||
y_pred: | ||
Predicted target. | ||
mask: | ||
Binary mask that denotes which points are valid forecasts. | ||
Returns | ||
------- | ||
: | ||
Metric value. | ||
""" | ||
return torch.mean(mask * torch.abs(y_true - y_pred)) | ||
|
||
|
||
class NBeatsMSE(nn.Module): | ||
"""MSE with mask.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, y_true: "torch.Tensor", y_pred: "torch.Tensor", mask: "torch.Tensor") -> "torch.Tensor": | ||
"""Compute metric. | ||
Parameters | ||
---------- | ||
y_true: | ||
True target. | ||
y_pred: | ||
Predicted target. | ||
mask: | ||
Binary mask that denotes which points are valid forecasts. | ||
Returns | ||
------- | ||
: | ||
Metric value. | ||
""" | ||
return torch.mean(mask * (y_true - y_pred) ** 2) | ||
|
||
|
||
class NBeatsLoss(Enum): | ||
"""Enum with N-BEATS supported losses.""" | ||
|
||
smape = NBeatsSMAPE() | ||
mape = NBeatsMAPE() | ||
mae = NBeatsMAE() | ||
mse = NBeatsMSE() |
Oops, something went wrong.