Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

percentile interval tests for survival analysis #180

Merged
merged 3 commits into from
Jan 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
276 changes: 276 additions & 0 deletions tests/testthat/test-survival-tune-int-pctl.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,276 @@
suppressPackageStartupMessages(library(tidymodels))
suppressPackageStartupMessages(library(censored))
suppressPackageStartupMessages(library(finetune))

test_that("percentile internals for survival models with static metric", {
skip_if_not_installed("prodlim")

skip_if_not_installed("parsnip", minimum_version = "1.1.0.9003")
skip_if_not_installed("censored", minimum_version = "0.2.0.9000")
skip_if_not_installed("tune", minimum_version = "1.1.2.9015")
skip_if_not_installed("yardstick", minimum_version = "1.3.0")

# standard setup start -------------------------------------------------------

set.seed(1)
sim_dat <- prodlim::SimSurv(500) %>%
mutate(event_time = Surv(time, event)) %>%
select(event_time, X1, X2)

set.seed(2)
split <- initial_split(sim_dat)
sim_tr <- training(split)
sim_te <- testing(split)
sim_rs <- vfold_cv(sim_tr)

time_points <- c(10, 1, 5, 15)

# last fit for models with static metrics ------------------------------------

stc_mtrc <- metric_set(concordance_survival)

set.seed(2193)
rs_static_res <-
survival_reg() %>%
last_fit(
event_time ~ X1 + X2,
split = split,
metrics = stc_mtrc
)

set.seed(1)
static_int <- int_pctl(rs_static_res, times = 1001)

exp_ptype <-
tibble::tibble(
.metric = character(0),
.estimator = character(0),
.lower = numeric(0),
.estimate = numeric(0),
.upper = numeric(0),
.config = character(0)
)

expect_equal(static_int[0,], exp_ptype)
expect_true(nrow(static_int) == 1)
expect_true(all(static_int$.metric == "concordance_survival"))

# make sure `alpha` works
set.seed(1)
static_int_45 <- int_pctl(rs_static_res, times = 1001, alpha = 0.45)
expect_true(static_int$.lower < static_int_45$.lower)
expect_true(static_int$.upper > static_int_45$.upper)
expect_equal(static_int$.estimate, static_int_45$.estimate)
})


test_that("percentile internals for survival models with integrated metric", {
skip_if_not_installed("prodlim")
skip_if_not_installed("parsnip", minimum_version = "1.1.0.9003")
skip_if_not_installed("censored", minimum_version = "0.2.0.9000")
skip_if_not_installed("tune", minimum_version = "1.1.2.9013")
skip_if_not_installed("yardstick", minimum_version = "1.3.0")

# standard setup start -------------------------------------------------------

set.seed(1)
sim_dat <- prodlim::SimSurv(500) %>%
mutate(event_time = Surv(time, event)) %>%
select(event_time, X1, X2)

set.seed(2)
split <- initial_split(sim_dat)
sim_tr <- training(split)
sim_te <- testing(split)
sim_rs <- vfold_cv(sim_tr)

time_points <- c(10, 1, 5, 15)

mod_spec <-
proportional_hazards(penalty = tune(), mixture = 1) %>%
set_engine("glmnet") %>%
set_mode("censored regression")

grid <- tibble(penalty = c(0.01, 0.1))

gctrl <- control_grid(save_pred = TRUE)

# Grid search with integrated metrics ----------------------------------------

sint_mtrc <- metric_set(brier_survival_integrated)

set.seed(2193)
grid_integrated_res <-
mod_spec %>%
tune_grid(
event_time ~ X1 + X2,
resamples = sim_rs,
grid = grid,
metrics = sint_mtrc,
eval_time = time_points,
control = gctrl
)

set.seed(1)
integrated_int <- int_pctl(grid_integrated_res, times = 1001)

exp_ptype <-
tibble::tibble(
.metric = character(0),
.estimator = character(0),
.lower = numeric(0),
.estimate = numeric(0),
.upper = numeric(0),
.config = character(0),
penalty = numeric(0)
)

expect_equal(integrated_int[0,], exp_ptype)
expect_true(nrow(integrated_int) == nrow(grid))
expect_equal(sort(integrated_int$penalty), grid$penalty)
expect_true(all(integrated_int$.metric == "brier_survival_integrated"))

})



test_that("percentile internals for survival models with dynamic metrics", {
skip_if_not_installed("prodlim")
skip_if_not_installed("parsnip", minimum_version = "1.1.0.9003")
skip_if_not_installed("censored", minimum_version = "0.2.0.9000")
skip_if_not_installed("tune", minimum_version = "1.1.2.9013")
skip_if_not_installed("yardstick", minimum_version = "1.3.0")
skip_if_not_installed("finetune", minimum_version = "1.1.0.9005")

# standard setup start -------------------------------------------------------

set.seed(1)
sim_dat <- prodlim::SimSurv(500) %>%
mutate(event_time = Surv(time, event)) %>%
select(event_time, X1, X2)

set.seed(2)
split <- initial_split(sim_dat)
sim_tr <- training(split)
sim_te <- testing(split)
sim_rs <- bootstraps(sim_tr, times = 20)

time_points <- 10

mod_spec <-
decision_tree(cost_complexity = tune()) %>%
set_mode("censored regression")

grid <- tibble(cost_complexity = 10^c(-10, -2, -1))

gctrl <- control_grid(save_pred = TRUE)
rctrl <- control_race(save_pred = TRUE, verbose_elim = FALSE, verbose = FALSE)


# Racing with dynamic metrics ------------------------------------------------

dyn_mtrc <- metric_set(brier_survival)

set.seed(2193)
aov_dyn_res <-
mod_spec %>%
tune_race_anova(
event_time ~ X1 + X2,
resamples = sim_rs,
grid = grid,
metrics = dyn_mtrc,
eval_time = time_points,
control = rctrl
)

set.seed(1)
dyn_int <- int_pctl(aov_dyn_res, times = 1001)

winners <- show_best(aov_dyn_res, eval_time = 10, metric = "brier_survival")

exp_ptype <-
tibble::tibble(
.metric = character(0),
.estimator = character(0),
.eval_time = numeric(0),
.lower = numeric(0),
.estimate = numeric(0),
.upper = numeric(0),
.config = character(0),
cost_complexity = numeric(0)
)

expect_equal(dyn_int[0,], exp_ptype)
expect_true(nrow(dyn_int) == nrow(winners))
expect_equal(sort(dyn_int$cost_complexity), sort(winners$cost_complexity))
expect_true(all(dyn_int$.metric == "brier_survival"))
})


test_that("percentile internals for survival models mixture of metric types", {
skip_if_not_installed("prodlim")
skip_if_not_installed("parsnip", minimum_version = "1.1.0.9003")
skip_if_not_installed("censored", minimum_version = "0.2.0.9000")
skip_if_not_installed("tune", minimum_version = "1.1.2.9013")
skip_if_not_installed("yardstick", minimum_version = "1.3.0")

# standard setup start -------------------------------------------------------

set.seed(1)
sim_dat <- prodlim::SimSurv(500) %>%
mutate(event_time = Surv(time, event)) %>%
select(event_time, X1, X2)

set.seed(2)
split <- initial_split(sim_dat)
sim_tr <- training(split)
sim_te <- testing(split)
sim_rs <- vfold_cv(sim_tr)

time_points <- c(10, 1, 5, 15)

mod_spec <-
bag_tree() %>%
set_mode("censored regression")

rsctrl <- control_resamples(save_pred = TRUE)

# resampling models with a mixture of metrics --------------------------------

mix_mtrc <- metric_set(brier_survival, brier_survival_integrated, concordance_survival)

set.seed(2193)
rs_mixed_res <-
mod_spec %>%
fit_resamples(
event_time ~ X1 + X2,
resamples = sim_rs,
metrics = mix_mtrc,
eval_time = time_points,
control = rsctrl
)

set.seed(1)
mixed_int <- int_pctl(rs_mixed_res, times = 1001)

exp_ptype <-
tibble::tibble(
.metric = character(0),
.estimator = character(0),
.eval_time = numeric(0),
.lower = numeric(0),
.estimate = numeric(0),
.upper = numeric(0),
.config = character(0),
)

expect_equal(mixed_int[0,], exp_ptype)
expect_true(nrow(mixed_int) == (length(time_points) + 2))
expect_true(sum(mixed_int$.metric == "brier_survival") == length(time_points))
expect_true(sum(mixed_int$.metric == "brier_survival_integrated") == 1)
expect_true(sum(mixed_int$.metric == "concordance_survival") == 1)
expect_true(all(!is.na(mixed_int$.eval_time[mixed_int$.metric == "brier_survival"])))
expect_true(all(is.na(mixed_int$.eval_time[mixed_int$.metric == "brier_survival_integrated"])))
expect_true(all(is.na(mixed_int$.eval_time[mixed_int$.metric == "concordance_survival"])))

})
Loading