Skip to content

Commit

Permalink
merge pr #925: rename interval columns
Browse files Browse the repository at this point in the history
  • Loading branch information
simonpcouch authored Sep 18, 2020
2 parents 93ce84c + ccbdb20 commit 8bd3835
Show file tree
Hide file tree
Showing 7 changed files with 42 additions and 26 deletions.
6 changes: 5 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -495,7 +495,11 @@ Authors@R:
person(given = "R. Willem",
family = "Vervoort",
role = "ctb",
email = "[email protected]"))
email = "[email protected]"),
person(given = "Brenton M.",
family = "Wiernik",
role = "ctb",
email = "[email protected]"))
Description: Summarizes key information about statistical
objects in tidy tibbles. This makes it easy to report results, create
plots and consistently work with large numbers of models at once.
Expand Down
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ in the overwriting of entries in the `curve` column (#914)
* Fixed bug related to univariate zoo series in `tidy.zoo()` (#916 by @WillemVervoort)
* Fixed a bug related to `tidy.prcomp()` assigning the wrong PC labels from "loadings"
and "scores" matrices (#910 by @tavareshugo)
* Consistently label interval columns `.lower` and `.upper` in `augment()`
methods (#925 by @bwiernik)
* Add `glance.coeftest()` method (#932 by @grantmcdermott)
* Followed through with the planned deprecation of character vector tidiers
* Several unsupported model objects that subclass `glm` and `lm` now error more
Expand Down
8 changes: 4 additions & 4 deletions R/drc-tidiers.R
Original file line number Diff line number Diff line change
Expand Up @@ -81,8 +81,8 @@ glance.drc <- function(x, ...) {
#' @template param_unused_dots
#'
#' @evalRd return_augment(
#' ".conf.low",
#' ".conf.high",
#' ".lower",
#' ".upper",
#' ".se.fit",
#' ".fitted",
#' ".resid",
Expand Down Expand Up @@ -123,8 +123,8 @@ augment.drc <- function(x, data = NULL, newdata = NULL,
newdata = newdata, interval = "confidence",
level = conf.level
))
ret[[".conf.low"]] <- preds[["Lower"]]
ret[[".conf.high"]] <- preds[["Upper"]]
ret[[".lower"]] <- preds[["Lower"]]
ret[[".upper"]] <- preds[["Upper"]]
}
if (se_fit) {
preds <- data.frame(predict(x, newdata = newdata, se.fit = TRUE))
Expand Down
4 changes: 2 additions & 2 deletions R/quantreg-rq-tidiers.R
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ glance.rq <- function(x, ...) {
#'
#' @details Depending on the arguments passed on to `predict.rq` via `...`,
#' a confidence interval is also calculated on the fitted values resulting in
#' columns `.conf.low` and `.conf.high`. Does not provide confidence
#' columns `.lower` and `.upper`. Does not provide confidence
#' intervals when data is specified via the `newdata` argument.
#'
#' @export
Expand Down Expand Up @@ -129,7 +129,7 @@ augment.rq <- function(x, data = model.frame(x), newdata = NULL, ...) {
original[[".tau"]] <- x[["tau"]]
return(as_tibble(original))
} else {
colnames(pred) <- c(".fitted", ".conf.low", ".conf.high")
colnames(pred) <- c(".fitted", ".lower", ".upper")
original[[".tau"]] <- x[["tau"]]
return(as_tibble(cbind(original, pred)))
}
Expand Down
26 changes: 18 additions & 8 deletions R/rma-tidiers.R
Original file line number Diff line number Diff line change
Expand Up @@ -186,15 +186,18 @@ glance.rma <- function(x, ...) {
#' @template title_desc_augment
#'
#' @inheritParams tidy.rma
#' @param interval For `rma.mv` models, should prediction intervals
#' (`"prediction"`, default) or confidence intervals (`"confidence"`)
#' intervals be returned? For `rma.uni` models, prediction intervals are
#' always returned. For `rma.mh` and `rma.peto` models, confidence intervals
#' are always returned.
#'
#' @evalRd return_augment(
#' .observed = "The observed values for the individual studies",
#' ".fitted",
#' ".se.fit",
#' ".conf.low",
#' ".conf.high",
#' ".cred.low",
#' ".cred.high",
#' ".lower",
#' ".upper",
#' ".resid",
#' ".moderator",
#' ".moderator.level"
Expand All @@ -219,7 +222,7 @@ glance.rma <- function(x, ...) {
#' meta_analysis <- rma(yi, vi, data = df, method = "EB")
#'
#' augment(meta_analysis)
augment.rma <- function(x, ...) {
augment.rma <- function(x, interval = c("prediction", "confidence"), ...) {
# metafor generally handles these for different models through the monolith
# `rma` class; using `purrr::possibly` primarily helps discard unused
# components but also helps get the right component for each model
Expand All @@ -235,9 +238,16 @@ augment.rma <- function(x, ...) {
pred <- as.data.frame(pred)

# fix names
names(pred)[1:4] <- c(".fitted", ".se.fit", ".conf.low", ".conf.high")
credible_intervals <- names(pred) %in% c("cr.lb", "cr.ub")
names(pred)[credible_intervals] <- c(".cred.low", ".cred.high")
interval <- match.arg(interval, c("prediction", "confidence"))
if (interval == "prediction" & any(names(pred) %in% c("cr.lb", "cr.ub", "pi.lb", "pi.ub"))) {
confidence_intervals <- names(pred) %in% c("ci.lb", "ci.ub")
pred <- pred[, !confidence_intervals]
names(pred)[1:4] <- c(".fitted", ".se.fit", ".lower", ".upper")
} else {
prediction_intervals <- names(pred) %in% c("cr.lb", "cr.ub", "pi.lb", "pi.ub")
pred <- pred[, !prediction_intervals]
names(pred)[1:4] <- c(".fitted", ".se.fit", ".lower", ".upper")
}
moderator <- names(pred) == "X"
names(pred)[moderator] <- ".moderator"
moderator_level <- names(pred) == "tau2.level"
Expand Down
6 changes: 3 additions & 3 deletions R/stats-lm-tidiers.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
#' ggplot(au, aes(wt, mpg)) +
#' geom_point() +
#' geom_line(aes(y = .fitted)) +
#' geom_ribbon(aes(ymin = .conf.low, ymax = .conf.high), col = NA, alpha = 0.3)
#' geom_ribbon(aes(ymin = .lower, ymax = .upper), col = NA, alpha = 0.3)
#'
#' # predict on new data without outcome variable. Output does not include .resid
#' newdata <- newdata %>%
Expand Down Expand Up @@ -113,8 +113,8 @@ tidy.lm <- function(x, conf.int = FALSE, conf.level = 0.95, ...) {
#'
#' @evalRd return_augment(
#' ".hat",
#' ".conf.low",
#' ".conf.high",
#' ".lower",
#' ".upper",
#' ".sigma",
#' ".cooksd",
#' ".se.fit",
Expand Down
16 changes: 8 additions & 8 deletions R/utilities.R
Original file line number Diff line number Diff line change
Expand Up @@ -390,8 +390,8 @@ augment_newdata <- function(x, data, newdata, .se_fit, interval = NULL, ...) {
df$.fitted <- pred_obj$fit %>% unname()
} else {
df$.fitted <- pred_obj$fit[, "fit"]
df$.conf.low <- pred_obj$fit[, "lwr"]
df$.conf.high <- pred_obj$fit[, "upr"]
df$.lower <- pred_obj$fit[, "lwr"]
df$.upper <- pred_obj$fit[, "upr"]
}

# a couple possible names for the standard error element of the list
Expand All @@ -403,17 +403,17 @@ augment_newdata <- function(x, data, newdata, .se_fit, interval = NULL, ...) {
} else if (!is.null(interval) && interval!="none") {
pred_obj <- predict(x, newdata = newdata, na.action = na.pass, se.fit = FALSE, interval = interval, ...)
df$.fitted <- pred_obj[, "fit"]
df$.conf.low <- pred_obj[, "lwr"]
df$.conf.high <- pred_obj[, "upr"]
df$.lower <- pred_obj[, "lwr"]
df$.upper <- pred_obj[, "upr"]
} else if (passed_newdata) {
if (is.null(interval) || interval=="none") {
df$.fitted <- predict(x, newdata = newdata, na.action = na.pass, ...) %>%
unname()
} else {
pred_obj <- predict(x, newdata = newdata, na.action = na.pass, interval = interval, ...)
df$.fitted <- pred_obj$fit[, "fit"]
df$.conf.low <- pred_obj$fit[, "lwr"]
df$.conf.high <- pred_obj$fit[, "upr"]
df$.lower <- pred_obj$fit[, "lwr"]
df$.upper <- pred_obj$fit[, "upr"]
}
} else {
if (is.null(interval) || interval=="none") {
Expand All @@ -422,8 +422,8 @@ augment_newdata <- function(x, data, newdata, .se_fit, interval = NULL, ...) {
} else {
pred_obj <- predict(x, newdata = newdata, na.action = na.pass, interval = interval, ...)
df$.fitted <- pred_obj$fit[, "fit"]
df$.conf.low <- pred_obj$fit[, "lwr"]
df$.conf.high <- pred_obj$fit[, "upr"]
df$.lower <- pred_obj$fit[, "lwr"]
df$.upper <- pred_obj$fit[, "upr"]
}
}

Expand Down

0 comments on commit 8bd3835

Please sign in to comment.