-
Notifications
You must be signed in to change notification settings - Fork 458
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
230 additions
and
0 deletions.
There are no files selected for viewing
226 changes: 226 additions & 0 deletions
226
configs/mvp/nusc_centerpoint_voxelnet_0075voxel_fix_bn_z_scale_debug.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
import itertools | ||
import logging | ||
|
||
from det3d.utils.config_tool import get_downsample_factor | ||
|
||
tasks = [ | ||
dict(num_class=1, class_names=["car"]), | ||
dict(num_class=2, class_names=["truck", "construction_vehicle"]), | ||
dict(num_class=2, class_names=["bus", "trailer"]), | ||
dict(num_class=1, class_names=["barrier"]), | ||
dict(num_class=2, class_names=["motorcycle", "bicycle"]), | ||
dict(num_class=2, class_names=["pedestrian", "traffic_cone"]), | ||
] | ||
|
||
class_names = list(itertools.chain(*[t["class_names"] for t in tasks])) | ||
|
||
# training and testing settings | ||
target_assigner = dict( | ||
tasks=tasks, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type="VoxelNet", | ||
pretrained=None, | ||
reader=dict( | ||
type="DynamicVoxelEncoder", | ||
pc_range=[-54, -54, -5.0, 54, 54, 3.0], | ||
voxel_size=[0.075, 0.075, 0.2], | ||
), | ||
backbone=dict( | ||
type="SpMiddleResNetFHD", num_input_features=5, ds_factor=8 | ||
), | ||
neck=dict( | ||
type="RPN", | ||
layer_nums=[5, 5], | ||
ds_layer_strides=[1, 2], | ||
ds_num_filters=[128, 256], | ||
us_layer_strides=[1, 2], | ||
us_num_filters=[256, 256], | ||
num_input_features=256, | ||
logger=logging.getLogger("RPN"), | ||
), | ||
bbox_head=dict( | ||
type="CenterHead", | ||
in_channels=sum([256, 256]), | ||
tasks=tasks, | ||
dataset='nuscenes', | ||
weight=0.25, | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0], | ||
common_heads={'reg': (2, 2), 'height': (1, 2), 'dim':(3, 2), 'rot':(2, 2), 'vel': (2, 2)}, | ||
share_conv_channel=64, | ||
dcn_head=False | ||
), | ||
) | ||
|
||
assigner = dict( | ||
target_assigner=target_assigner, | ||
out_size_factor=get_downsample_factor(model), | ||
dense_reg=1, | ||
gaussian_overlap=0.1, | ||
max_objs=500, | ||
min_radius=2, | ||
pc_range=[-54, -54, -5.0, 54, 54, 3.0], | ||
voxel_size=[0.075, 0.075, 0.2] | ||
) | ||
|
||
|
||
train_cfg = dict(assigner=assigner) | ||
|
||
test_cfg = dict( | ||
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
max_per_img=500, | ||
nms=dict( | ||
use_rotate_nms=True, | ||
use_multi_class_nms=False, | ||
nms_pre_max_size=1000, | ||
nms_post_max_size=83, | ||
nms_iou_threshold=0.2, | ||
), | ||
score_threshold=0.1, | ||
pc_range=[-54, -54], | ||
out_size_factor=get_downsample_factor(model), | ||
voxel_size=[0.075, 0.075] | ||
) | ||
|
||
# dataset settings | ||
dataset_type = "NuScenesDataset" | ||
nsweeps = 10 | ||
data_root = "data/nuScenes" | ||
|
||
db_sampler = dict( | ||
type="GT-AUG", | ||
enable=False, | ||
db_info_path="data/nuScenes/dbinfos_train_10sweeps_withvelo.pkl", | ||
sample_groups=[ | ||
dict(car=2), | ||
dict(truck=3), | ||
dict(construction_vehicle=7), | ||
dict(bus=4), | ||
dict(trailer=6), | ||
dict(barrier=2), | ||
dict(motorcycle=6), | ||
dict(bicycle=6), | ||
dict(pedestrian=2), | ||
dict(traffic_cone=2), | ||
], | ||
db_prep_steps=[ | ||
dict( | ||
filter_by_min_num_points=dict( | ||
car=5, | ||
truck=5, | ||
bus=5, | ||
trailer=5, | ||
construction_vehicle=5, | ||
traffic_cone=5, | ||
barrier=5, | ||
motorcycle=5, | ||
bicycle=5, | ||
pedestrian=5, | ||
) | ||
), | ||
dict(filter_by_difficulty=[-1],), | ||
], | ||
global_random_rotation_range_per_object=[0, 0], | ||
rate=1.0, | ||
) | ||
train_preprocessor = dict( | ||
mode="train", | ||
shuffle_points=True, | ||
global_rot_noise=[-0.78539816, 0.78539816], | ||
global_scale_noise=[0.9, 1.1], | ||
global_translate_std=0.5, | ||
db_sampler=db_sampler, | ||
class_names=class_names, | ||
) | ||
|
||
val_preprocessor = dict( | ||
mode="val", | ||
shuffle_points=False, | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type="LoadPointCloudFromFile", dataset=dataset_type), | ||
dict(type="LoadPointCloudAnnotations", with_bbox=True), | ||
dict(type="Preprocess", cfg=train_preprocessor), | ||
dict(type="AssignLabel", cfg=train_cfg["assigner"]), | ||
dict(type="Reformat"), | ||
# dict(type='PointCloudCollect', keys=['points', 'voxels', 'annotations', 'calib']), | ||
] | ||
test_pipeline = [ | ||
dict(type="LoadPointCloudFromFile", dataset=dataset_type), | ||
dict(type="LoadPointCloudAnnotations", with_bbox=True), | ||
dict(type="Preprocess", cfg=val_preprocessor), | ||
dict(type="AssignLabel", cfg=train_cfg["assigner"]), | ||
dict(type="Reformat"), | ||
] | ||
|
||
train_anno = "data/nuScenes/infos_train_10sweeps_withvelo_filter_True.pkl" | ||
val_anno = "data/nuScenes/infos_val_10sweeps_withvelo_filter_True.pkl" | ||
test_anno = None | ||
|
||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=train_anno, | ||
ann_file=train_anno, | ||
nsweeps=nsweeps, | ||
load_interval=1000, | ||
class_names=class_names, | ||
pipeline=train_pipeline, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=val_anno, | ||
test_mode=True, | ||
ann_file=val_anno, | ||
nsweeps=nsweeps, | ||
class_names=class_names, | ||
pipeline=test_pipeline, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=test_anno, | ||
ann_file=test_anno, | ||
nsweeps=nsweeps, | ||
class_names=class_names, | ||
pipeline=test_pipeline, | ||
), | ||
) | ||
|
||
|
||
|
||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# optimizer | ||
optimizer = dict( | ||
type="adam", amsgrad=0.0, wd=0.01, fixed_wd=True, moving_average=False, | ||
) | ||
lr_config = dict( | ||
type="one_cycle", lr_max=0.001, moms=[0.95, 0.85], div_factor=10.0, pct_start=0.4, | ||
) | ||
|
||
checkpoint_config = dict(interval=1) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=5, | ||
hooks=[ | ||
dict(type="TextLoggerHook"), | ||
# dict(type='TensorboardLoggerHook') | ||
], | ||
) | ||
# yapf:enable | ||
# runtime settings | ||
total_epochs = 20 | ||
device_ids = range(8) | ||
dist_params = dict(backend="nccl", init_method="env://") | ||
log_level = "INFO" | ||
work_dir = './work_dirs/{}/'.format(__file__[__file__.rfind('/') + 1:-3]) | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters