-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
251 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import { expect, test } from 'bun:test' | ||
import { deg } from './angle' | ||
import { PI, PIOVERTWO } from './constants' | ||
import { angle, cross, div, divScalar, dot, minus, minusScalar, mul, mulScalar, negate, normalize, plane, plus, plusScalar, rotateByRodrigues, xAxis, yAxis, zAxis, type MutVec3, type Vec3 } from './vector' | ||
|
||
test('angle', () => { | ||
expect(angle(xAxis(), yAxis())).toBe(PIOVERTWO) | ||
expect(angle([1, 2, 3], [-1, -2, -3])).toBe(PI) | ||
expect(angle([2, -3, 1], [4, -6, 2])).toBe(0) | ||
expect(angle([3, 4, 5], [1, 2, 2])).toBeCloseTo(Math.acos(1.4 / Math.sqrt(2)), 14) | ||
}) | ||
|
||
test('normalize', () => { | ||
const a = Math.sqrt(14) | ||
expect(normalize([3, 2, -1])).toEqual([3 / a, 2 / a, -1 / a]) | ||
|
||
const o: MutVec3 = [0, 0, 0] | ||
expect(normalize(o)).toEqual([0, 0, 0]) | ||
|
||
normalize([3, 2, -1], o) | ||
expect(o).not.toEqual(a) | ||
expect(o).toEqual([3 / a, 2 / a, -1 / a]) | ||
}) | ||
|
||
test('plus', () => { | ||
expect(plusScalar([2, 3, 2], 2)).toEqual([4, 5, 4]) | ||
expect(plus([2, 3, 2], [2, 3, 2])).toEqual([4, 6, 4]) | ||
}) | ||
|
||
test('minus', () => { | ||
expect(minusScalar([2, 3, 2], 2)).toEqual([0, 1, 0]) | ||
expect(minus([2, 3, 2], [-2, -3, -2])).toEqual([4, 6, 4]) | ||
}) | ||
|
||
test('mul', () => { | ||
expect(mulScalar([2, 3, 2], 2)).toEqual([4, 6, 4]) | ||
expect(mul([2, 3, 2], [2, 3, 2])).toEqual([4, 9, 4]) | ||
}) | ||
|
||
test('div', () => { | ||
expect(divScalar([2, 3, 2], 2)).toEqual([1, 1.5, 1]) | ||
expect(div([2, 3, 2], [2, 3, 2])).toEqual([1, 1, 1]) | ||
}) | ||
|
||
test('dot', () => { | ||
expect(dot([2, 3, 2], [2, 3, 2])).toBe(17) | ||
expect(dot([2, 3, 2], negate([2, 3, 2]))).toBe(-17) | ||
}) | ||
|
||
test('cross', () => { | ||
expect(cross([2, 3, 2], [3, 2, 3])).toEqual([5, 0, -5]) | ||
}) | ||
|
||
test('rotateByRodrigues', () => { | ||
const x = xAxis() | ||
expect(rotateByRodrigues(x, x, PI)).toEqual(x) | ||
|
||
const y = yAxis() | ||
expect(rotateByRodrigues(y, y, PI)).toEqual(y) | ||
|
||
const z = zAxis() | ||
expect(rotateByRodrigues(z, z, PI)).toEqual(z) | ||
|
||
const v: Vec3 = [1, 2, 3] | ||
expect(rotateByRodrigues(v, x, PI / 4)).toEqual([1, -0.7071067811865472, 3.5355339059327378]) | ||
expect(rotateByRodrigues(v, y, PI / 4)).toEqual([2.82842712474619, 2, 1.4142135623730954]) | ||
expect(rotateByRodrigues(v, z, PI / 4)).toEqual([-0.7071067811865474, 2.121320343559643, 3]) | ||
|
||
const axis: Vec3 = [3, 4, 5] | ||
expect(rotateByRodrigues(v, axis, 0)).toEqual(v) | ||
expect(rotateByRodrigues(v, axis, deg(29.6512852))).toEqual([1.2132585570946925, 1.7306199385433279, 3.087548914908522]) | ||
expect(rotateByRodrigues(v, axis, deg(120.3053274))).toEqual([2.0867722943019413, 1.6319848922736107, 2.642348709599946]) | ||
expect(rotateByRodrigues(v, axis, deg(230.6512852))).toEqual([1.6963389417184784, 2.5681684228867847, 2.1276618966594847]) | ||
expect(rotateByRodrigues(v, axis, deg(359.6139797))).toEqual([0.9981071206640635, 2.0038129934994813, 2.9980853328019763]) | ||
|
||
const o: MutVec3 = [0, 0, 0] | ||
rotateByRodrigues(v, axis, deg(29.6512852), o) | ||
expect(o).toEqual([1.2132585570946925, 1.7306199385433279, 3.087548914908522]) | ||
}) | ||
|
||
test('plane', () => { | ||
expect(plane([1, -2, 1], [4, -2, -2], [4, 1, 4])).toEqual([9, -18, 9]) | ||
}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
import type { Mutable } from 'utility-types' | ||
import type { Angle } from './angle' | ||
import { PI } from './constants' | ||
|
||
// Vector of numbers with three axis. | ||
export type Vec3 = readonly [number, number, number] | ||
|
||
// Like Vec3 but mutable. | ||
export type MutVec3 = Mutable<Vec3> | ||
|
||
// Scalar product between the vectors a and b. | ||
export function dot(a: Vec3, b: Vec3) { | ||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] | ||
} | ||
|
||
// Fills the vector. | ||
export function fill(v: MutVec3, a: number, b: number, c: number): MutVec3 { | ||
v[0] = a | ||
v[1] = b | ||
v[2] = c | ||
return v | ||
} | ||
|
||
// Cross product between the vectors a and b. | ||
export function cross(a: Vec3, b: Vec3, o?: MutVec3): MutVec3 { | ||
const c = a[1] * b[2] - a[2] * b[1] | ||
const d = a[2] * b[0] - a[0] * b[2] | ||
const e = a[0] * b[1] - a[1] * b[0] | ||
|
||
if (o) return fill(o, c, d, e) | ||
else return [c, d, e] | ||
} | ||
|
||
export function length(v: Vec3) { | ||
return Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]) | ||
} | ||
|
||
export function distance(a: Vec3, b: Vec3) { | ||
const c = a[0] - b[0] | ||
const d = a[1] - b[1] | ||
const e = a[2] - b[2] | ||
return Math.sqrt(c * c + d * d + e * e) | ||
} | ||
|
||
// Creates a new mutable vector from the given vector. | ||
export function clone(v: Vec3): MutVec3 { | ||
return [...v] | ||
} | ||
|
||
// Computes the angle between the vectors a and b. | ||
export function angle(a: Vec3, b: Vec3): Angle { | ||
// https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf | ||
// const c = mulScalar(a, length(b)) | ||
// const d = mulScalar(b, length(a)) | ||
// return 2 * Math.atan2(length(minus(c, d)), length(plus(c, d))) | ||
|
||
const d = dot(a, b) | ||
const v = d / (length(a) * length(b)) | ||
if (Math.abs(v) > 1.0) | ||
if (v < 0.0) return PI | ||
else return 0 | ||
else return Math.acos(v) | ||
} | ||
|
||
// Creates a new empty vector. | ||
export function zero(): MutVec3 { | ||
return [0, 0, 0] | ||
} | ||
|
||
export function xAxis(): MutVec3 { | ||
return [1, 0, 0] | ||
} | ||
|
||
export function yAxis(): MutVec3 { | ||
return [0, 1, 0] | ||
} | ||
|
||
export function zAxis(): MutVec3 { | ||
return [0, 0, 1] | ||
} | ||
|
||
export function latitude(v: Vec3) { | ||
return Math.acos(v[2]) | ||
} | ||
|
||
export function longitude(v: Vec3) { | ||
return Math.atan2(v[1], v[0]) | ||
} | ||
|
||
// Negates the vector. | ||
export function negate(a: Vec3, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, -a[0], -a[1], -a[2]) | ||
else return [-a[0], -a[1], -a[2]] | ||
} | ||
|
||
export function plusScalar(a: Vec3, scalar: number, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] + scalar, a[1] + scalar, a[2] + scalar) | ||
else return [a[0] + scalar, a[1] + scalar, a[2] + scalar] | ||
} | ||
|
||
export function minusScalar(a: Vec3, scalar: number, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] - scalar, a[1] - scalar, a[2] - scalar) | ||
else return [a[0] - scalar, a[1] - scalar, a[2] - scalar] | ||
} | ||
|
||
export function mulScalar(a: Vec3, scalar: number, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] * scalar, a[1] * scalar, a[2] * scalar) | ||
else return [a[0] * scalar, a[1] * scalar, a[2] * scalar] | ||
} | ||
|
||
export function divScalar(a: Vec3, scalar: number, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] / scalar, a[1] / scalar, a[2] / scalar) | ||
else return [a[0] / scalar, a[1] / scalar, a[2] / scalar] | ||
} | ||
|
||
export function plus(a: Vec3, b: Vec3, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] + b[0], a[1] + b[1], a[2] + b[2]) | ||
else return [a[0] + b[0], a[1] + b[1], a[2] + b[2]] | ||
} | ||
|
||
export function minus(a: Vec3, b: Vec3, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] - b[0], a[1] - b[1], a[2] - b[2]) | ||
else return [a[0] - b[0], a[1] - b[1], a[2] - b[2]] | ||
} | ||
|
||
export function mul(a: Vec3, b: Vec3, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] * b[0], a[1] * b[1], a[2] * b[2]) | ||
else return [a[0] * b[0], a[1] * b[1], a[2] * b[2]] | ||
} | ||
|
||
export function div(a: Vec3, b: Vec3, o?: MutVec3): MutVec3 { | ||
if (o) return fill(o, a[0] / b[0], a[1] / b[1], a[2] / b[2]) | ||
else return [a[0] / b[0], a[1] / b[1], a[2] / b[2]] | ||
} | ||
|
||
// Normalizes the vector. | ||
export function normalize(v: Vec3, o?: MutVec3): MutVec3 { | ||
const len = length(v) | ||
|
||
if (len === 0) | ||
if (o) return fill(o, ...v) | ||
else return clone(v) | ||
else return divScalar(v, len, o) | ||
} | ||
|
||
// Efficient algorithm for rotating a vector in space, given an axis and angle of rotation. | ||
export function rotateByRodrigues(v: Vec3, axis: Vec3, angle: Angle, o?: MutVec3): Vec3 { | ||
const cosa = Math.cos(angle) | ||
const b: MutVec3 = [0, 0, 0] | ||
const c: MutVec3 = [0, 0, 0] | ||
const k = normalize(axis, o) | ||
mulScalar(cross(k, v, b), Math.sin(angle), b) | ||
mulScalar(k, dot(k, v), c) | ||
plus(mulScalar(v, cosa, k), b, b) | ||
return plus(b, mulScalar(c, 1.0 - cosa, c), o) | ||
} | ||
|
||
export function plane(a: Vec3, b: Vec3, c: Vec3, o?: MutVec3): MutVec3 { | ||
const d = minus(b, a, o) | ||
const e = minus(c, b) | ||
return cross(d, e, o) | ||
} |