-
Notifications
You must be signed in to change notification settings - Fork 21
/
main.cpp
245 lines (205 loc) · 9.08 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <iostream>
/* RLTK (RogueLike Tool Kit) 1.00
* Copyright (c) 2016-Present, Bracket Productions.
* Licensed under the MIT license - see LICENSE file.
*
* Example 4: Now we implement a basic map, and use A* to find our way around it.
* This example is a bit more in-depth, since it demonstrates the library's ability
* to use templates to specialize itself around your map design - we won't force a
* map type on you!
*/
// You need to include the RLTK header
#include "../../rltk/rltk.hpp"
// We're using a vector to represent the map
#include <vector>
// We're also going to be using a shared_ptr to a map. Why shared? Because the library
// hands it off to you and it's up to you to use it; this provides some safety that it
// will be disposed when you are done with it.
#include <memory>
// For convenience, import the whole rltk namespace. You may not want to do this
// in larger projects, to avoid naming collisions.
using namespace rltk;
using namespace rltk::colors;
// A default-defined random number generator. You can specify a seed to get
// the same results each time, but for now we're keeping it simple.
random_number_generator rng;
// For now, we always want our "dude" to be a yellow @ - so he's constexpr
const vchar dude{'@', YELLOW, BLACK};
// We're also going to render our destination as a pink heart. Aww.
const vchar destination_glyph{3, MAGENTA, BLACK};
// We now need to represent walls and floors, too
const vchar wall_tile{'#', WHITE, BLACK};
const vchar floor_tile{'.', GREY, BLACK}; // Note that "floor" is taken as a name in C++!
// Now we define a structure to represent a location. In this case, it's a simple
// x/y coordinate.
struct location_t {
int x=-1; // I like to set uninitialized values to something invalid for help with debugging
int y=-1;
// For convenience, we're overriding the quality operator. This gives a very
// quick and natural looking way to say "are these locations the same?"
bool operator==(location_t &rhs) { return (x==rhs.x && y==rhs.y); }
location_t() {}
location_t(const int X, const int Y) : x(X), y(Y) {}
};
// Now we define our basic map. Why a struct? Because a struct is just a class with
// everything public in it!
struct map_t {
map_t(const int &w, const int &h) : width(w), height(h) {
// Resize the vector to hold the whole map; this way it won't reallocate
walkable.resize(w*h);
// Set the entire map to walkable
std::fill(walkable.begin(), walkable.end(), true);
// We want the perimeter to be solid
for (int x=0; x<width; ++x) {
walkable[at(x,0)]=false;
walkable[at(x,height-1)]=false;
}
for (int y=0; y<height; ++y) {
walkable[at(0,y)] = false;
walkable[at(width-1,y)] = false;
}
// Every tile other than 10,10 (starting) has a 16% chance of being solid
for (int y=1; y<height-2; ++y) {
for (int x=1; x<width-2; ++x) {
if ((x != 10 && y != 10) && rng.roll_dice(1,6)==1) walkable[at(x,y)] = false;
}
}
}
// Calculate the vector offset of a grid location
inline int at(const int &x, const int &y) { return (y*width)+x; }
// The width and height of the map
const int width, height;
// The actual walkable storage vector
std::vector<bool> walkable;
};
// The A* library returns a navigation path with a template specialization to our location_t.
// Store the path here. Normally, you'd use "auto" for this type, it is a lot less typing!
std::shared_ptr<navigation_path<location_t>> path;
// We're using 1024x768, with 8 pixel wide chars. That gives a console grid of
// 128 x 96. We'll go with that for the map, even though in reality the screen
// might change. Worrying about that is for a future example!
constexpr int MAP_WIDTH = 128;
constexpr int MAP_HEIGHT = 96;
map_t map(MAP_WIDTH, MAP_HEIGHT);
// Instead of raw ints, we'll use the location structure to represent where our
// dude is. Using C++14 initialization, it's nice and clean.
location_t dude_position {10,10};
// We'll also use a location_t to represent the intended destination.
location_t destination {10,10};
// The A* library also requires a helper class to understand your map format.
struct navigator {
// This lets you define a distance heuristic. Manhattan distance works really well, but
// for now we'll just use a simple euclidian distance squared.
// The geometry system defines one for us.
static float get_distance_estimate(location_t &pos, location_t &goal) {
float d = distance2d_squared(pos.x, pos.y, goal.x, goal.y);
return d;
}
// Heuristic to determine if we've reached our destination? In some cases, you'd not want
// this to be a simple comparison with the goal - for example, if you just want to be
// adjacent to (or even a preferred distance from) the goal. In this case,
// we're trying to get to the goal rather than near it.
static bool is_goal(location_t &pos, location_t &goal) {
return pos == goal;
}
// This is where we calculate where you can go from a given tile. In this case, we check
// all 8 directions, and if the destination is walkable return it as an option.
static bool get_successors(location_t pos, std::vector<location_t> &successors) {
//std::cout << pos.x << "/" << pos.y << "\n";
if (map.walkable[map.at(pos.x-1, pos.y-1)]) successors.push_back(location_t(pos.x-1, pos.y-1));
if (map.walkable[map.at(pos.x, pos.y-1)]) successors.push_back(location_t(pos.x, pos.y-1));
if (map.walkable[map.at(pos.x+1, pos.y-1)]) successors.push_back(location_t(pos.x+1, pos.y-1));
if (map.walkable[map.at(pos.x-1, pos.y)]) successors.push_back(location_t(pos.x-1, pos.y));
if (map.walkable[map.at(pos.x+1, pos.y)]) successors.push_back(location_t(pos.x+1, pos.y));
if (map.walkable[map.at(pos.x-1, pos.y+1)]) successors.push_back(location_t(pos.x-1, pos.y+1));
if (map.walkable[map.at(pos.x, pos.y+1)]) successors.push_back(location_t(pos.x, pos.y+1));
if (map.walkable[map.at(pos.x+1, pos.y+1)]) successors.push_back(location_t(pos.x+1, pos.y+1));
return true;
}
// This function lets you set a cost on a tile transition. For now, we'll always use a cost of 1.0.
static float get_cost(location_t &position, location_t &successor) {
return 1.0f;
}
// This is a simple comparison to determine if two locations are the same. It just passes
// through to the location_t's equality operator in this instance (we didn't do that automatically)
// because there are times you might want to behave differently.
static bool is_same_state(location_t &lhs, location_t &rhs) {
return lhs == rhs;
}
};
// Lets go really fast!
constexpr double tick_duration = 1.0;
double tick_time = 0.0;
// Tick is called every frame. The parameter specifies how many ms have elapsed
// since the last time it was called.
void tick(double duration_ms) {
// Iterate over the whole map, rendering as appropriate
for (int y=0; y<MAP_HEIGHT; ++y) {
for (int x=0; x<MAP_WIDTH; ++x) {
if (map.walkable[map.at(x,y)]) {
console->set_char(console->at(x,y), floor_tile);
} else {
console->set_char(console->at(x,y), wall_tile);
}
}
}
// Increase the tick time by the frame duration. If it has exceeded
// the tick duration, then we move the @.
tick_time += duration_ms;
if (tick_time > tick_duration) {
// Are we there yet?
if (dude_position == destination) {
// We are there! We need to pick a new destination.
destination.x = rng.roll_dice(1, MAP_WIDTH-1);
destination.y = rng.roll_dice(1, MAP_HEIGHT-1);
// Lets make sure that the destination is walkable
while (map.walkable[map.at(destination.x,destination.y)] == false) {
destination.x = rng.roll_dice(1, MAP_WIDTH-1);
destination.y = rng.roll_dice(1, MAP_HEIGHT-1);
}
// Now determine how to get there
if (path) path.reset();
path = find_path<location_t, navigator>(dude_position, destination);
if (!path->success) {
destination = dude_position;
std::cout << "RESET: THIS ISN'T MEANT TO HAPPEN!\n";
}
} else {
// Follow the breadcrumbs!
location_t next_step = path->steps.front();
dude_position.x = next_step.x;
dude_position.y = next_step.y;
path->steps.pop_front();
}
// Important: we clear the tick count after the update.
tick_time = 0.0;
}
// Render our planned path. We're using auto and a range-for to avoid typing all
// the iterator stuff
if (path) {
// We're going to show off a bit and "lerp" the color along the path; the red
// lightens as it approaches the destination. This is a preview of some of the
// color functions.
const float n_steps = static_cast<float>(path->steps.size());
float i = 0;
for (auto step : path->steps) {
const float lerp_amount = i / n_steps;
vchar highlight{ 177, lerp(DARK_GREEN, LIGHTEST_GREEN, lerp_amount), BLACK };
console->set_char(console->at(step.x, step.y), highlight);
++i;
}
}
// Render our destination
console->set_char(console->at(destination.x, destination.y), destination_glyph);
// Finally, we render the @ symbol. dude_x and dude_y are in terminal coordinates.
console->set_char(console->at(dude_position.x, dude_position.y), dude);
}
// Your main function
int main()
{
// Initialize with defaults
init(config_simple_px("../assets"));
// Enter the main loop. "tick" is the function we wrote above.
run(tick);
return 0;
}