forked from JuliaGraphs/Graphs.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
all_simple_paths
: update PR JuliaGraphs#20
- this updates the port of sbromberger/LightGraphs.jl#1540 from JuliaGraphs#20 - has a number of simplifications relative to original implementation - original implementation by @i_aki_y - cutoff now defaults to `nv(g)` Co-authored-by: @i_aki_y Co-authored-by: @etiennedeg
- Loading branch information
Showing
4 changed files
with
290 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
""" | ||
all_simple_paths(g, u, v; cutoff=nv(g)) --> Graphs.SimplePathIterator | ||
Returns an iterator that generates all simple paths in the graph `g` from a source vertex | ||
`u` to a target vertex `v` or iterable of target vertices `vs`. | ||
The iterator's elements (i.e., the paths) can be materialized via `collect` or `iterate`. | ||
Paths are iterated in the order of a depth-first search. | ||
## Keyword arguments | ||
The maximum path length (i.e., number of edges) is limited by the keyword argument `cutoff` | ||
(default, `nv(g)`). If a path's path length is greater than or equal to `cutoff`, it is | ||
omitted. | ||
## Examples | ||
```jldoctest | ||
julia> using Graphs | ||
julia> g = complete_graph(4) | ||
julia> spi = all_simple_paths(g, 1, 4) | ||
Graphs.SimplePathIterator(1 → 4) | ||
julia> collect(spi) | ||
5-element Vector{Vector{Int64}}: | ||
[1, 4] | ||
[1, 3, 4] | ||
[1, 3, 2, 4] | ||
[1, 2, 4] | ||
[1, 2, 3, 4] | ||
``` | ||
We can restrict the search to paths of length less than a specified cut-off (here, 2 edges): | ||
```jldoctest | ||
julia> collect(all_simple_paths(g, 1, 4; cutoff=2)) | ||
[1, 2, 4] | ||
[1, 3, 4] | ||
[1, 4] | ||
``` | ||
""" | ||
function all_simple_paths( | ||
g::AbstractGraph{T}, | ||
u::T, | ||
vs; | ||
cutoff::T=nv(g) | ||
) where T <: Integer | ||
|
||
vs = vs isa Set{T} ? vs : Set{T}(vs) | ||
return SimplePathIterator(g, u, vs, cutoff) | ||
end | ||
|
||
""" | ||
SimplePathIterator{T <: Integer} | ||
Iterator that generates all simple paths in `g` from `u` to `vs` of a length at most | ||
`cutoff`. | ||
""" | ||
struct SimplePathIterator{T <: Integer, G <: AbstractGraph{T}} | ||
g::G | ||
u::T # start vertex | ||
vs::Set{T} # target vertices | ||
cutoff::T # max length of resulting paths | ||
end | ||
|
||
function Base.show(io::IO, spi::SimplePathIterator) | ||
print(io, "SimplePathIterator{", typeof(spi.g), "}(", spi.u, " → ") | ||
if length(spi.vs) == 1 | ||
print(io, only(spi.vs)) | ||
else | ||
print(io, '[') | ||
join(io, spi.vs, ", ") | ||
print(io, ']') | ||
end | ||
print(io, ')') | ||
end | ||
Base.IteratorSize(::Type{<:SimplePathIterator}) = Base.SizeUnknown() | ||
Base.eltype(::SimplePathIterator{T}) where T = Vector{T} | ||
|
||
mutable struct SimplePathIteratorState{T <: Integer} | ||
stack::Stack{Vector{T}} # used to restore iteration of child vertices; each vector has | ||
# two elements: a parent vertex and an index of children | ||
visited::Stack{T} # current path candidate | ||
queued::Vector{T} # remaining targets if path length reached cutoff | ||
end | ||
function SimplePathIteratorState(spi::SimplePathIterator{T}) where T <: Integer | ||
stack = Stack{Vector{T}}() | ||
visited = Stack{T}() | ||
queued = Vector{T}() | ||
push!(visited, spi.u) # add a starting vertex to the path candidate | ||
push!(stack, [spi.u, 1]) # add a child node with index 1 | ||
SimplePathIteratorState{T}(stack, visited, queued) | ||
end | ||
|
||
function _stepback!(state::SimplePathIteratorState) # updates iterator state. | ||
pop!(state.stack) | ||
pop!(state.visited) | ||
end | ||
|
||
|
||
""" | ||
Base.iterate(spi::SimplePathIterator{T}, state=nothing) | ||
Returns the next simple path in `spi`, according to a depth-first search. | ||
""" | ||
function Base.iterate( | ||
spi::SimplePathIterator{T}, | ||
state::SimplePathIteratorState=SimplePathIteratorState(spi) | ||
) where T <: Integer | ||
|
||
while !isempty(state.stack) | ||
if !isempty(state.queued) # consume queued targets | ||
target = pop!(state.queued) | ||
result = vcat(reverse(collect(state.visited)), target) | ||
if isempty(state.queued) | ||
_stepback!(state) | ||
end | ||
return result, state | ||
end | ||
|
||
parent_node, next_childe_index = first(state.stack) | ||
children = outneighbors(spi.g, parent_node) | ||
if length(children) < next_childe_index | ||
# all children have been checked, step back. | ||
_stepback!(state) | ||
continue | ||
end | ||
|
||
child = children[next_childe_index] | ||
first(state.stack)[2] += 1 # move child index forward | ||
child in state.visited && continue | ||
|
||
if length(state.visited) == spi.cutoff | ||
# collect adjacent targets if more exist and add them to queue | ||
rest_children = Set(children[next_childe_index: end]) | ||
state.queued = collect(setdiff(intersect(spi.vs, rest_children), Set(state.visited))) | ||
|
||
if isempty(state.queued) | ||
_stepback!(state) | ||
end | ||
else | ||
result = if child in spi.vs | ||
vcat(reverse(collect(state.visited)), child) | ||
else | ||
nothing | ||
end | ||
|
||
# update state variables | ||
push!(state.visited, child) # move to child vertex | ||
if !isempty(setdiff(spi.vs, state.visited)) # expand stack until all targets are found | ||
push!(state.stack, [child, 1]) # add the child node as a parent for next iteration | ||
else | ||
pop!(state.visited) # step back and explore the remaining child nodes | ||
end | ||
|
||
if !isnothing(result) # found a new path, return it | ||
return result, state | ||
end | ||
end | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
@testset "All simple paths" begin | ||
# single path | ||
g = path_graph(4) | ||
paths = all_simple_paths(g, 1, 4) | ||
@test Set(p for p in paths) == Set([[1, 2, 3, 4]]) | ||
@test Set(collect(paths)) == Set([[1, 2, 3, 4]]) | ||
@test 1 == length(paths) | ||
|
||
|
||
# single path with cutoff | ||
@test collect(all_simple_paths(g, 1, 4; cutoff=2)) == [[1, 2, 4], [1, 3, 4], [1, 4]] | ||
|
||
# two paths | ||
g = path_graph(4) | ||
add_vertex!(g) | ||
add_edge!(g, 3, 5) | ||
paths = all_simple_paths(g, 1, [4, 5]) | ||
@test Set(p for p in paths) == Set([[1, 2, 3, 4], [1, 2, 3, 5]]) | ||
@test Set(collect(paths)) == Set([[1, 2, 3, 4], [1, 2, 3, 5]]) | ||
@test 2 == length(paths) | ||
|
||
# two paths with cutoff | ||
g = path_graph(4) | ||
add_vertex!(g) | ||
add_edge!(g, 3, 5) | ||
paths = all_simple_paths(g, 1, [4, 5], cutoff=3) | ||
@test Set(p for p in paths) == Set([[1, 2, 3, 4], [1, 2, 3, 5]]) | ||
|
||
# two targets in line emits two paths | ||
g = path_graph(4) | ||
add_vertex!(g) | ||
paths = all_simple_paths(g, 1, [3, 4]) | ||
@test Set(p for p in paths) == Set([[1, 2, 3], [1, 2, 3, 4]]) | ||
|
||
# two paths digraph | ||
g = SimpleDiGraph(5) | ||
add_edge!(g, 1, 2) | ||
add_edge!(g, 2, 3) | ||
add_edge!(g, 3, 4) | ||
add_edge!(g, 3, 5) | ||
paths = all_simple_paths(g, 1, [4, 5]) | ||
@test Set(p for p in paths) == Set([[1, 2, 3, 4], [1, 2, 3, 5]]) | ||
|
||
# two paths digraph with cutoff | ||
g = SimpleDiGraph(5) | ||
add_edge!(g, 1, 2) | ||
add_edge!(g, 2, 3) | ||
add_edge!(g, 3, 4) | ||
add_edge!(g, 3, 5) | ||
paths = all_simple_paths(g, 1, [4, 5], cutoff=3) | ||
@test Set(p for p in paths) == Set([[1, 2, 3, 4], [1, 2, 3, 5]]) | ||
|
||
# digraph with a cycle | ||
g = SimpleDiGraph(4) | ||
add_edge!(g, 1, 2) | ||
add_edge!(g, 2, 3) | ||
add_edge!(g, 3, 1) | ||
add_edge!(g, 2, 4) | ||
paths = all_simple_paths(g, 1, 4) | ||
@test Set(p for p in paths) == Set([[1, 2, 4]]) | ||
|
||
# digraph with a cycle. paths with two targets share a node in the cycle. | ||
g = SimpleDiGraph(4) | ||
add_edge!(g, 1, 2) | ||
add_edge!(g, 2, 3) | ||
add_edge!(g, 3, 1) | ||
add_edge!(g, 2, 4) | ||
paths = all_simple_paths(g, 1, [3, 4]) | ||
@test Set(p for p in paths) == Set([[1, 2, 3], [1, 2, 4]]) | ||
|
||
# source equals targets | ||
g = SimpleGraph(4) | ||
paths = all_simple_paths(g, 1, 1) | ||
@test Set(p for p in paths) == Set([]) | ||
|
||
# cutoff prones paths | ||
# Note, a path lenght is node - 1 | ||
g = complete_graph(4) | ||
paths = all_simple_paths(g, 1, 2; cutoff=1) | ||
@test Set(p for p in paths) == Set([[1, 2]]) | ||
|
||
paths = all_simple_paths(g, 1, 2; cutoff=2) | ||
@test Set(p for p in paths) == Set([[1, 2], [1, 3, 2], [1, 4, 2]]) | ||
|
||
# non trivial graph | ||
g = SimpleDiGraph(6) | ||
add_edge!(g, 1, 2) | ||
add_edge!(g, 2, 3) | ||
add_edge!(g, 3, 4) | ||
add_edge!(g, 4, 5) | ||
|
||
add_edge!(g, 1, 6) | ||
add_edge!(g, 2, 6) | ||
add_edge!(g, 2, 4) | ||
add_edge!(g, 6, 5) | ||
add_edge!(g, 5, 3) | ||
add_edge!(g, 5, 4) | ||
|
||
paths = all_simple_paths(g, 2, [3, 4]) | ||
@test Set(p for p in paths) == Set([ | ||
[2, 3], | ||
[2, 4, 5, 3], | ||
[2, 6, 5, 3], | ||
[2, 4], | ||
[2, 3, 4], | ||
[2, 6, 5, 4], | ||
[2, 6, 5, 3, 4], | ||
]) | ||
|
||
paths = all_simple_paths(g, 2, [3, 4], cutoff=3) | ||
@test Set(p for p in paths) == Set([ | ||
[2, 3], | ||
[2, 4, 5, 3], | ||
[2, 6, 5, 3], | ||
[2, 4], | ||
[2, 3, 4], | ||
[2, 6, 5, 4], | ||
]) | ||
|
||
paths = all_simple_paths(g, 2, [3, 4], cutoff=2) | ||
@test Set(p for p in paths) == Set([ | ||
[2, 3], | ||
[2, 4], | ||
[2, 3, 4], | ||
]) | ||
|
||
end |