TestFlows.com Open-Source Software Testing Framework Combinatorics
The testflows.combinatorics module provides a convenient collection of tools used for combinatorial testing to check different combinations of the input parameters including calculating covering arrays for pairwise and n-wise testing using the IPOG algorithm.
Read more about:
Provides support for calculating the following:
- pure Python implementation of covering arrays based on the IPOG algorithm that can be used with any Python test framework
- permutations of input parameters
- combinations with and without replacement
- cartesian product of input iterables
- binomial coefficients
When used with TestFlows.com Open-Source Software Testing Framework the testflows.combinatorics module comes by default as a part of the testflows.core module. However, if you would like to use it with other test frameworks, it can be installed separately as follows:
pip3 install --update testflows.combinatorics
The Covering(parameters, strength=2) or CoveringArray(parameters, strength=2) class allows you to calculate a covering array for some k parameters having the same or different number of possible values.
The class uses IPOG, an in-parameter-order, algorithm as described in IPOG: A General Strategy for T-Way Software Testing paper by Yu Lei et al.
For any non-trivial number of parameters, exhaustively testing all possibilities is not feasible.
For example, if we have 10 parameters (
Given that exhaustive testing might not be practical, a covering array could give us a much smaller number of tests if we choose to check all possible interactions only between some fixed number of parameters at least once, where an interaction is some specific combination, where order does not matter, of some t number of parameters, covering all possible values that each selected parameter could have.
Note: | You can find out more about covering arrays by visiting the US National Institute of Standards and Technology's (NIST) Introduction to Covering Arrays page. |
---|
The Covering(parameters, strength=2) takes the following arguments
where,
- parameters
- specifies parameter names and their possible values and is specified as a dict[str, list[value]], where key is the parameter name and value is a list of possible values for a given parameter.
- strength
- specifies the strength t of the covering array that indicates the number of parameters in each combination, for which all possible interactions will be checked. If strength equals the number of parameters, then you get the exhaustive case.
The return value of the Covering(parameters, strength=2) is a CoveringArray object that is an iterable of tests, where each test is a dictionary, with each key being the parameter name and its value being the parameter value.
For example,
from testflows.combinatorics import Covering
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(Covering(parameters, strength=2))
CoveringArray({'a': [0, 1], 'b': ['a', 'b'], 'c': [0, 1, 2], 'd': ['d0', 'd1']},2)[ 6 a b c d ------- 0 b 2 d1 0 a 1 d0 1 b 1 d1 1 a 2 d0 0 b 0 d0 1 a 0 d1 ]
Given that in the example above, the strength=2, all possible 2-way (pairwise) combinations of parameters a, b, c, and d are the following:
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
The six tests that make up the covering array cover all the possible interactions between the values of each of these parameter combinations. For example, the ('a', 'b') parameter combination covers all possible combinations of the values that parameters a and b can take.
Given that parameter a can have values [0, 1], and parameter b can have values ['a', 'b'] all possible interactions are the following:
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
where the first element of each tuple corresponds to the value of the parameter a, and the second element corresponds to the value of the parameter b.
Examining the covering array above, we can see that all possible interactions of parameters a and b are indeed covered at least once. The same check can be done for other parameter combinations.
The check() method of the CoveringArray can be used to verify that the tests inside the covering array cover all possible t-way interactions at least once, and thus meet the definition of a covering array.
For example,
from testflows.combinatorics import Covering
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
tests = Covering(parameters, strength=2)
print(tests.check())
The CoveringArray object implements a custom __str__ method, and therefore it can be easily converted into a string representation similar to the format used in the NIST covering array tables.
For example,
print(Covering(parameters, strength=2))
CoveringArray({'a': [0, 1], 'b': ['a', 'b'], 'c': [0, 1, 2], 'd': ['d0', 'd1']},2)[ 6 a b c d ------- 0 b 2 d1 0 a 1 d0 1 b 1 d1 1 a 2 d0 0 b 0 d0 1 a 0 d1 ]
The combinations(iterable, r, with_replacement=False) function can be used to calculate all r-length combinations of elements in a specified iterable.
For example,
from testflows.combinatorics import combinations
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(combinations(parameters.keys(), 2)))
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
Note: | This function is equivalent to the itertools.combinations |
---|
You can calculate all combinations with replacement by setting the with_replacement argument to True.
For example,
from testflows.combinatorics import combinations
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(combinations(parameters.keys(), 2, with_replacement=True)))
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'b'), ('b', 'c'), ('b', 'd'), ('c', 'c'), ('c', 'd'), ('d', 'd')]
Note: | The with_replacement=True option is equivalent to itertools.combinations_with_replacement |
---|
You can calculate all possible combinations of elements from different iterables using the cartesian product(*iterables, repeat=1) function.
For example,
from testflows.combinatorics import *
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(product(parameters["a"], parameters["b"])))
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
Note: | This function is equivalent to the itertools.product |
---|
The permutations(iterable, r=None) function can be used to calculate the r-length permutations of elements for a given iterable.
Note: | Permutations are different from combinations. In a combination, the elements don't have any order, but in a permutation, the order of elements is important. |
---|
For example,
from testflows.combinatorics import *
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(permutations(parameters.keys(), 2)))
('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'a'), ('b', 'c'), ('b', 'd'), ('c', 'a'), ('c', 'b'), ('c', 'd'), ('d', 'a'), ('d', 'b'), ('d', 'c')]
and as we can see, both ('a', 'b') and ('b', 'a') elements are present.
Note: | This function is equivalent to the itertools.permutations |
---|
You can calculate the binomial coefficient, which is the same as the number of ways to choose k items from n items without repetition and without order.
Binomial coefficient is defined as
when
For example,
from testflows.combinatorics import *
print(binomial(4,2))
6
which means that there are 6 ways to choose 2 elements out of 4.
Note: | This function is equivalent to the math.comb |
---|