Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve tesstrain.sh script #92

Merged
merged 6 commits into from
Sep 10, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 47 additions & 46 deletions training/language-specific.sh
Original file line number Diff line number Diff line change
Expand Up @@ -780,7 +780,7 @@ VERTICAL_FONTS=( \
# holds the text corpus file for the language, used in phase F
# ${FONTS[@]}
# holds a sequence of applicable fonts for the language, used in
# phase F & I
# phase F & I. only set if not already set, i.e. from command line
# ${TRAINING_DATA_ARGUMENTS}
# non-default arguments to the training_data program used in phase T
# ${FILTER_ARGUMENTS} -
Expand All @@ -794,7 +794,6 @@ set_lang_specific_parameters() {
local lang=$1
# The default text location is now given directly from the language code.
TEXT_CORPUS="${FLAGS_webtext_prefix}/${lang}.corpus.txt"
FONTS=( "${LATIN_FONTS[@]}" )
FILTER_ARGUMENTS=""
WORDLIST2DAWG_ARGUMENTS=""
# These dawg factors represent the fraction of the corpus not covered by the
Expand All @@ -816,30 +815,30 @@ set_lang_specific_parameters() {
case ${lang} in
# Latin languages.
enm ) TEXT2IMAGE_EXTRA_ARGS=" --ligatures" # Add ligatures when supported
FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
frm ) TEXT_CORPUS="${FLAGS_webtext_prefix}/fra.corpus.txt"
# Make long-s substitutions for Middle French text
FILTER_ARGUMENTS="--make_early_language_variant=fra"
TEXT2IMAGE_EXTRA_ARGS=" --ligatures" # Add ligatures when supported.
FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
frk ) TEXT_CORPUS="${FLAGS_webtext_prefix}/deu.corpus.txt"
FONTS=( "${FRAKTUR_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${FRAKTUR_FONTS[@]}" );;
ita_old )
TEXT_CORPUS="${FLAGS_webtext_prefix}/ita.corpus.txt"
# Make long-s substitutions for Early Italian text
FILTER_ARGUMENTS="--make_early_language_variant=ita"
TEXT2IMAGE_EXTRA_ARGS=" --ligatures" # Add ligatures when supported.
FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
spa_old )
TEXT_CORPUS="${FLAGS_webtext_prefix}/spa.corpus.txt"
# Make long-s substitutions for Early Spanish text
FILTER_ARGUMENTS="--make_early_language_variant=spa"
TEXT2IMAGE_EXTRA_ARGS=" --ligatures" # Add ligatures when supported.
FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
srp_latn )
TEXT_CORPUS=${FLAGS_webtext_prefix}/srp.corpus.txt ;;
vie ) TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
FONTS=( "${VIETNAMESE_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${VIETNAMESE_FONTS[@]}" ) ;;
# Highly inflective languages get a bigger dawg size.
# TODO(rays) Add more here!
hun ) WORD_DAWG_SIZE=1000000 ;;
Expand Down Expand Up @@ -899,14 +898,14 @@ set_lang_specific_parameters() {
# Strip unrenderable words as not all fonts will render the extended
# latin symbols found in Vietnamese text.
WORD_DAWG_SIZE=1000000
FONTS=( "${EARLY_LATIN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${EARLY_LATIN_FONTS[@]}" );;

# Cyrillic script-based languages.
rus ) FONTS=( "${RUSSIAN_FONTS[@]}" )
rus ) test -z "$FONTS" && FONTS=( "${RUSSIAN_FONTS[@]}" )
NUMBER_DAWG_FACTOR=0.05
WORD_DAWG_SIZE=1000000 ;;
aze_cyrl | bel | bul | kaz | mkd | srp | tgk | ukr | uzb_cyrl )
FONTS=( "${RUSSIAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${RUSSIAN_FONTS[@]}" ) ;;

# Special code for performing Cyrillic language-id that is trained on
# Russian, Serbian, Ukranian, Belarusian, Macedonian, Tajik and Mongolian
Expand All @@ -916,78 +915,78 @@ set_lang_specific_parameters() {
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
GENERATE_WORD_BIGRAMS=0
WORD_DAWG_SIZE=1000000
FONTS=( "${RUSSIAN_FONTS[@]}" );;
test -z "$FONTS" && FONTS=( "${RUSSIAN_FONTS[@]}" );;

# South Asian scripts mostly have a lot of different graphemes, so trim
# down the MEAN_COUNT so as not to get a huge amount of text.
asm | ben )
MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
FONTS=( "${BENGALI_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${BENGALI_FONTS[@]}" ) ;;
bih | hin | mar | nep | san )
MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
FONTS=( "${DEVANAGARI_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${DEVANAGARI_FONTS[@]}" ) ;;
bod ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
FONTS=( "${TIBETAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${TIBETAN_FONTS[@]}" ) ;;
dzo )
WORD_DAWG_FACTOR=0.01
FONTS=( "${TIBETAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${TIBETAN_FONTS[@]}" ) ;;
guj ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
FONTS=( "${GUJARATI_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${GUJARATI_FONTS[@]}" ) ;;
kan ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --no_newline_in_output"
TEXT2IMAGE_EXTRA_ARGS=" --char_spacing=0.5"
FONTS=( "${KANNADA_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${KANNADA_FONTS[@]}" ) ;;
mal ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --no_newline_in_output"
TEXT2IMAGE_EXTRA_ARGS=" --char_spacing=0.5"
FONTS=( "${MALAYALAM_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${MALAYALAM_FONTS[@]}" ) ;;
ori )
WORD_DAWG_FACTOR=0.01
FONTS=( "${ORIYA_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${ORIYA_FONTS[@]}" ) ;;
pan ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.01
FONTS=( "${PUNJABI_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${PUNJABI_FONTS[@]}" ) ;;
sin ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.01
FONTS=( "${SINHALA_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${SINHALA_FONTS[@]}" ) ;;
tam ) MEAN_COUNT="30"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --no_newline_in_output"
TEXT2IMAGE_EXTRA_ARGS=" --char_spacing=0.5"
FONTS=( "${TAMIL_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${TAMIL_FONTS[@]}" ) ;;
tel ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --no_newline_in_output"
TEXT2IMAGE_EXTRA_ARGS=" --char_spacing=0.5"
FONTS=( "${TELUGU_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${TELUGU_FONTS[@]}" ) ;;

# SouthEast Asian scripts.
khm ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
FONTS=( "${KHMER_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${KHMER_FONTS[@]}" ) ;;
lao ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
FONTS=( "${LAOTHIAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${LAOTHIAN_FONTS[@]}" ) ;;
mya ) MEAN_COUNT="12"
WORD_DAWG_FACTOR=0.15
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
FONTS=( "${BURMESE_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${BURMESE_FONTS[@]}" ) ;;
tha ) MEAN_COUNT="30"
WORD_DAWG_FACTOR=0.01
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
FILTER_ARGUMENTS="--segmenter_lang=tha"
TRAINING_DATA_ARGUMENTS+=" --no_space_in_output --desired_bigrams="
AMBIGS_FILTER_DENOMINATOR="1000"
LEADING=48
FONTS=( "${THAI_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${THAI_FONTS[@]}" ) ;;

# CJK
chi_sim )
Expand All @@ -998,61 +997,61 @@ set_lang_specific_parameters() {
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
TRAINING_DATA_ARGUMENTS+=" --no_space_in_output --desired_bigrams="
FILTER_ARGUMENTS="--charset_filter=chi_sim --segmenter_lang=chi_sim"
FONTS=( "${CHI_SIM_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${CHI_SIM_FONTS[@]}" ) ;;
chi_tra )
MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.015
GENERATE_WORD_BIGRAMS=0
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
TRAINING_DATA_ARGUMENTS+=" --no_space_in_output --desired_bigrams="
FILTER_ARGUMENTS="--charset_filter=chi_tra --segmenter_lang=chi_tra"
FONTS=( "${CHI_TRA_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${CHI_TRA_FONTS[@]}" ) ;;
jpn ) MEAN_COUNT="15"
WORD_DAWG_FACTOR=0.015
GENERATE_WORD_BIGRAMS=0
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
TRAINING_DATA_ARGUMENTS+=" --no_space_in_output --desired_bigrams="
FILTER_ARGUMENTS="--charset_filter=jpn --segmenter_lang=jpn"
FONTS=( "${JPN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${JPN_FONTS[@]}" ) ;;
kor ) MEAN_COUNT="20"
WORD_DAWG_FACTOR=0.015
NUMBER_DAWG_FACTOR=0.05
TRAINING_DATA_ARGUMENTS+=" --infrequent_ratio=10000"
TRAINING_DATA_ARGUMENTS+=" --desired_bigrams="
GENERATE_WORD_BIGRAMS=0
FILTER_ARGUMENTS="--charset_filter=kor --segmenter_lang=kor"
FONTS=( "${KOREAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${KOREAN_FONTS[@]}" ) ;;

# Middle-Eastern scripts.
ara ) FONTS=( "${ARABIC_FONTS[@]}" ) ;;
div ) FONTS=( "${THAANA_FONTS[@]}" ) ;;
ara ) test -z "$FONTS" && FONTS=( "${ARABIC_FONTS[@]}" ) ;;
div ) test -z "$FONTS" && FONTS=( "${THAANA_FONTS[@]}" ) ;;
fas | pus | snd | uig | urd )
FONTS=( "${PERSIAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${PERSIAN_FONTS[@]}" ) ;;
heb | yid )
NUMBER_DAWG_FACTOR=0.05
WORD_DAWG_FACTOR=0.08
FONTS=( "${HEBREW_FONTS[@]}" ) ;;
syr ) FONTS=( "${SYRIAC_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${HEBREW_FONTS[@]}" ) ;;
syr ) test -z "$FONTS" && FONTS=( "${SYRIAC_FONTS[@]}" ) ;;

# Other scripts.
amh | tir)
FONTS=( "${AMHARIC_FONTS[@]}" ) ;;
chr ) FONTS=( "${NORTH_AMERICAN_ABORIGINAL_FONTS[@]}" \
test -z "$FONTS" && FONTS=( "${AMHARIC_FONTS[@]}" ) ;;
chr ) test -z "$FONTS" && FONTS=( "${NORTH_AMERICAN_ABORIGINAL_FONTS[@]}" \
"Noto Sans Cherokee" \
) ;;
ell | grc )
NUMBER_DAWG_FACTOR=0.05
WORD_DAWG_FACTOR=0.08
FONTS=( "${GREEK_FONTS[@]}" ) ;;
hye ) FONTS=( "${ARMENIAN_FONTS[@]}" ) ;;
iku ) FONTS=( "${NORTH_AMERICAN_ABORIGINAL_FONTS[@]}" ) ;;
kat) FONTS=( "${GEORGIAN_FONTS[@]}" ) ;;
test -z "$FONTS" && FONTS=( "${GREEK_FONTS[@]}" ) ;;
hye ) test -z "$FONTS" && FONTS=( "${ARMENIAN_FONTS[@]}" ) ;;
iku ) test -z "$FONTS" && FONTS=( "${NORTH_AMERICAN_ABORIGINAL_FONTS[@]}" ) ;;
kat) test -z "$FONTS" && FONTS=( "${GEORGIAN_FONTS[@]}" ) ;;
kat_old)
TEXT_CORPUS="${FLAGS_webtext_prefix}/kat.corpus.txt"
FONTS=( "${OLD_GEORGIAN_FONTS[@]}" ) ;;
kir ) FONTS=( "${KYRGYZ_FONTS[@]}" )
test -z "$FONTS" && FONTS=( "${OLD_GEORGIAN_FONTS[@]}" ) ;;
kir ) test -z "$FONTS" && FONTS=( "${KYRGYZ_FONTS[@]}" )
TRAINING_DATA_ARGUMENTS=" --infrequent_ratio=100" ;;
kur ) FONTS=( "${KURDISH_FONTS[@]}" ) ;;
kur ) test -z "$FONTS" && FONTS=( "${KURDISH_FONTS[@]}" ) ;;

*) err "Error: ${lang} is not a valid language code"
esac
Expand All @@ -1061,6 +1060,8 @@ set_lang_specific_parameters() {
elif [[ ! -z ${MEAN_COUNT} ]]; then
TRAINING_DATA_ARGUMENTS+=" --mean_count=${MEAN_COUNT}"
fi
# Default to Latin fonts if none have been set
test -z "$FONTS" && test -z "$FONTS" && FONTS=( "${LATIN_FONTS[@]}" )
}

#=============================================================================
Expand Down
7 changes: 2 additions & 5 deletions training/tesstrain.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@
# USAGE:
#
# tesstrain.sh
# --bin_dir PATH # Location of training program.
# --fontlist FONTS_STR # A plus-separated list of fontnames to train on.
# --fonts_dir FONTS_PATH # Path to font files.
# --lang LANG_CODE # ISO 639 code.
# --langdata_dir DATADIR # Path to tesseract/training/langdata directory.
# --output_dir OUTPUTDIR # Location of output traineddata file.
# --overwrite # Safe to overwrite files in output_dir.
# --run_shape_clustering # Run shape clustering (use for Indic langs).
# --exposures EXPOSURES # A list of exposure levels to use (e.g. "-1 0 1").
#
# OPTIONAL flags for input data. If unspecified we will look for them in
# the langdata_dir directory.
Expand All @@ -49,11 +49,8 @@ source `dirname $0`/tesstrain_utils.sh
ARGV=("$@")
parse_flags

tlog "\n=== Starting training for language '${LANG_CODE}'"

tlog "Cleaning workspace directory ${TRAINING_DIR}..."
mkdir -p ${TRAINING_DIR}
rm -fr ${TRAINING_DIR}/*
tlog "\n=== Starting training for language '${LANG_CODE}'"

source `dirname $0`/language-specific.sh
set_lang_specific_parameters ${LANG_CODE}
Expand Down
Loading