Skip to content

Commit

Permalink
Replace FLOAT64 by double data type
Browse files Browse the repository at this point in the history
On most systems double is the IEEE 754 double-precision binary
floating-point format (64 bits). Tesseract does not support other systems.

Signed-off-by: Stefan Weil <[email protected]>
  • Loading branch information
stweil committed Jul 2, 2018
1 parent 1a181a3 commit 919901e
Show file tree
Hide file tree
Showing 5 changed files with 78 additions and 79 deletions.
1 change: 0 additions & 1 deletion src/ccutil/host.h
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@

// definitions of portable data types (numbers and characters)
using FLOAT32 = float;
using FLOAT64 = double;
using BOOL8 = unsigned char;

#if defined(_WIN32)
Expand Down
142 changes: 71 additions & 71 deletions src/classify/cluster.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -175,20 +175,20 @@ struct STATISTICS {
};

struct BUCKETS {
DISTRIBUTION Distribution; // distribution being tested for
uint32_t SampleCount; // # of samples in histogram
FLOAT64 Confidence; // confidence level of test
FLOAT64 ChiSquared; // test threshold
uint16_t NumberOfBuckets; // number of cells in histogram
uint16_t Bucket[BUCKETTABLESIZE];// mapping to histogram buckets
uint32_t *Count; // frequency of occurrence histogram
FLOAT32 *ExpectedCount; // expected histogram
DISTRIBUTION Distribution; // distribution being tested for
uint32_t SampleCount; // # of samples in histogram
double Confidence; // confidence level of test
double ChiSquared; // test threshold
uint16_t NumberOfBuckets; // number of cells in histogram
uint16_t Bucket[BUCKETTABLESIZE]; // mapping to histogram buckets
uint32_t *Count; // frequency of occurrence histogram
FLOAT32 *ExpectedCount; // expected histogram
};

struct CHISTRUCT{
uint16_t DegreesOfFreedom;
FLOAT64 Alpha;
FLOAT64 ChiSquared;
double Alpha;
double ChiSquared;
};

// For use with KDWalk / MakePotentialClusters
Expand All @@ -199,8 +199,8 @@ struct ClusteringContext {
int32_t next; // next candidate to be used
};

typedef FLOAT64 (*DENSITYFUNC) (int32_t);
typedef FLOAT64 (*SOLVEFUNC) (CHISTRUCT *, double);
typedef double (*DENSITYFUNC) (int32_t);
typedef double (*SOLVEFUNC) (CHISTRUCT *, double);

#define Odd(N) ((N)%2)
#define Mirror(N,R) ((R) - (N) - 1)
Expand All @@ -215,12 +215,12 @@ typedef FLOAT64 (*SOLVEFUNC) (CHISTRUCT *, double);
deviations and x=BUCKETTABLESIZE is mapped to
+NORMALEXTENT standard deviations. */
#define SqrtOf2Pi 2.506628275
static const FLOAT64 kNormalStdDev = BUCKETTABLESIZE / (2.0 * NORMALEXTENT);
static const FLOAT64 kNormalVariance =
static const double kNormalStdDev = BUCKETTABLESIZE / (2.0 * NORMALEXTENT);
static const double kNormalVariance =
(BUCKETTABLESIZE * BUCKETTABLESIZE) / (4.0 * NORMALEXTENT * NORMALEXTENT);
static const FLOAT64 kNormalMagnitude =
static const double kNormalMagnitude =
(2.0 * NORMALEXTENT) / (SqrtOf2Pi * BUCKETTABLESIZE);
static const FLOAT64 kNormalMean = BUCKETTABLESIZE / 2;
static const double kNormalMean = BUCKETTABLESIZE / 2;

/** define lookup tables used to compute the number of histogram buckets
that should be used for a given number of samples. */
Expand Down Expand Up @@ -287,7 +287,7 @@ PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *NormalBuckets,
FLOAT64 Confidence);
double Confidence);

void MakeDimRandom(uint16_t i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc);

Expand All @@ -314,21 +314,21 @@ bool Independent(PARAM_DESC* ParamDesc,
BUCKETS *GetBuckets(CLUSTERER* clusterer,
DISTRIBUTION Distribution,
uint32_t SampleCount,
FLOAT64 Confidence);
double Confidence);

BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
uint32_t SampleCount,
FLOAT64 Confidence);
double Confidence);

uint16_t OptimumNumberOfBuckets(uint32_t SampleCount);

FLOAT64 ComputeChiSquared(uint16_t DegreesOfFreedom, FLOAT64 Alpha);
double ComputeChiSquared(uint16_t DegreesOfFreedom, double Alpha);

FLOAT64 NormalDensity(int32_t x);
double NormalDensity(int32_t x);

FLOAT64 UniformDensity(int32_t x);
double UniformDensity(int32_t x);

FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx);
double Integral(double f1, double f2, double Dx);

void FillBuckets(BUCKETS *Buckets,
CLUSTER *Cluster,
Expand Down Expand Up @@ -369,14 +369,14 @@ void InitBuckets(BUCKETS *Buckets);
int AlphaMatch(void *arg1, // CHISTRUCT *ChiStruct,
void *arg2); // CHISTRUCT *SearchKey);

CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, FLOAT64 Alpha);
CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, double Alpha);

FLOAT64 Solve(SOLVEFUNC Function,
void *FunctionParams,
FLOAT64 InitialGuess,
FLOAT64 Accuracy);
double Solve(SOLVEFUNC Function,
void *FunctionParams,
double InitialGuess,
double Accuracy);

FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x);
double ChiArea(CHISTRUCT *ChiParams, double x);

bool MultipleCharSamples(CLUSTERER* Clusterer,
CLUSTER* Cluster,
Expand Down Expand Up @@ -1223,7 +1223,7 @@ PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer,

FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Cluster->Mean[i],
sqrt ((FLOAT64) (Statistics->AvgVariance)));
sqrt ((double) (Statistics->AvgVariance)));
if (!DistributionOK (Buckets))
break;
}
Expand Down Expand Up @@ -1260,7 +1260,7 @@ PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer,

FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Cluster->Mean[i],
sqrt ((FLOAT64) Statistics->
sqrt ((double) Statistics->
CoVariance[i * (Clusterer->SampleSize + 1)]));
if (!DistributionOK (Buckets))
break;
Expand Down Expand Up @@ -1292,7 +1292,7 @@ PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *NormalBuckets,
FLOAT64 Confidence) {
double Confidence) {
PROTOTYPE *Proto;
int i;
BUCKETS *UniformBuckets = nullptr;
Expand All @@ -1308,7 +1308,7 @@ PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,

FillBuckets (NormalBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Proto->Mean[i],
sqrt ((FLOAT64) Proto->Variance.Elliptical[i]));
sqrt ((double) Proto->Variance.Elliptical[i]));
if (DistributionOK (NormalBuckets))
continue;

Expand Down Expand Up @@ -1688,7 +1688,7 @@ Independent(PARAM_DESC* ParamDesc,
BUCKETS *GetBuckets(CLUSTERER* clusterer,
DISTRIBUTION Distribution,
uint32_t SampleCount,
FLOAT64 Confidence) {
double Confidence) {
// Get an old bucket structure with the same number of buckets.
uint16_t NumberOfBuckets = OptimumNumberOfBuckets(SampleCount);
BUCKETS *Buckets =
Expand Down Expand Up @@ -1734,17 +1734,17 @@ BUCKETS *GetBuckets(CLUSTERER* clusterer,
*/
BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
uint32_t SampleCount,
FLOAT64 Confidence) {
double Confidence) {
const DENSITYFUNC DensityFunction[] =
{ NormalDensity, UniformDensity, UniformDensity };
int i, j;
BUCKETS *Buckets;
FLOAT64 BucketProbability;
FLOAT64 NextBucketBoundary;
FLOAT64 Probability;
FLOAT64 ProbabilityDelta;
FLOAT64 LastProbDensity;
FLOAT64 ProbDensity;
double BucketProbability;
double NextBucketBoundary;
double Probability;
double ProbabilityDelta;
double LastProbDensity;
double ProbDensity;
uint16_t CurrentBucket;
bool Symmetrical;

Expand Down Expand Up @@ -1772,7 +1772,7 @@ BUCKETS *MakeBuckets(DISTRIBUTION Distribution,

if (Symmetrical) {
// allocate buckets so that all have approx. equal probability
BucketProbability = 1.0 / (FLOAT64) (Buckets->NumberOfBuckets);
BucketProbability = 1.0 / (double) (Buckets->NumberOfBuckets);

// distribution is symmetric so fill in upper half then copy
CurrentBucket = Buckets->NumberOfBuckets / 2;
Expand Down Expand Up @@ -1865,8 +1865,8 @@ uint16_t OptimumNumberOfBuckets(uint32_t SampleCount) {
* @note Exceptions: none
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64
ComputeChiSquared (uint16_t DegreesOfFreedom, FLOAT64 Alpha)
double
ComputeChiSquared (uint16_t DegreesOfFreedom, double Alpha)
#define CHIACCURACY 0.01
#define MINALPHA (1e-200)
{
Expand All @@ -1891,8 +1891,8 @@ ComputeChiSquared (uint16_t DegreesOfFreedom, FLOAT64 Alpha)
if (OldChiSquared == nullptr) {
OldChiSquared = NewChiStruct (DegreesOfFreedom, Alpha);
OldChiSquared->ChiSquared = Solve (ChiArea, OldChiSquared,
(FLOAT64) DegreesOfFreedom,
(FLOAT64) CHIACCURACY);
(double) DegreesOfFreedom,
(double) CHIACCURACY);
ChiWith[DegreesOfFreedom] = push (ChiWith[DegreesOfFreedom],
OldChiSquared);
}
Expand Down Expand Up @@ -1920,8 +1920,8 @@ ComputeChiSquared (uint16_t DegreesOfFreedom, FLOAT64 Alpha)
* @note Exceptions: None
* @note History: 6/4/89, DSJ, Created.
*/
FLOAT64 NormalDensity(int32_t x) {
FLOAT64 Distance;
double NormalDensity(int32_t x) {
double Distance;

Distance = x - kNormalMean;
return kNormalMagnitude * exp(-0.5 * Distance * Distance / kNormalVariance);
Expand All @@ -1936,13 +1936,13 @@ FLOAT64 NormalDensity(int32_t x) {
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64 UniformDensity(int32_t x) {
static FLOAT64 UniformDistributionDensity = (FLOAT64) 1.0 / BUCKETTABLESIZE;
double UniformDensity(int32_t x) {
static double UniformDistributionDensity = (double) 1.0 / BUCKETTABLESIZE;

if ((x >= 0.0) && (x <= BUCKETTABLESIZE))
return UniformDistributionDensity;
else
return (FLOAT64) 0.0;
return (double) 0.0;
} // UniformDensity

/**
Expand All @@ -1955,7 +1955,7 @@ FLOAT64 UniformDensity(int32_t x) {
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx) {
double Integral(double f1, double f2, double Dx) {
return (f1 + f2) * Dx / 2.0;
} // Integral

Expand Down Expand Up @@ -2072,7 +2072,7 @@ uint16_t NormalBucket(PARAM_DESC *ParamDesc,
return 0;
if (X > BUCKETTABLESIZE - 1)
return ((uint16_t) (BUCKETTABLESIZE - 1));
return (uint16_t) floor((FLOAT64) X);
return (uint16_t) floor((double) X);
} // NormalBucket

/**
Expand Down Expand Up @@ -2107,7 +2107,7 @@ uint16_t UniformBucket(PARAM_DESC *ParamDesc,
return 0;
if (X > BUCKETTABLESIZE - 1)
return (uint16_t) (BUCKETTABLESIZE - 1);
return (uint16_t) floor((FLOAT64) X);
return (uint16_t) floor((double) X);
} // UniformBucket

/**
Expand Down Expand Up @@ -2259,10 +2259,10 @@ int ListEntryMatch(void *arg1, //ListNode
*/
void AdjustBuckets(BUCKETS *Buckets, uint32_t NewSampleCount) {
int i;
FLOAT64 AdjustFactor;
double AdjustFactor;

AdjustFactor = (((FLOAT64) NewSampleCount) /
((FLOAT64) Buckets->SampleCount));
AdjustFactor = (((double) NewSampleCount) /
((double) Buckets->SampleCount));

for (i = 0; i < Buckets->NumberOfBuckets; i++) {
Buckets->ExpectedCount[i] *= AdjustFactor;
Expand Down Expand Up @@ -2323,7 +2323,7 @@ int AlphaMatch(void *arg1, //CHISTRUCT *ChiStruct
* @note Exceptions: none
* @note History: Fri Aug 4 11:04:59 1989, DSJ, Created.
*/
CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, FLOAT64 Alpha) {
CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, double Alpha) {
CHISTRUCT *NewChiStruct;

NewChiStruct = (CHISTRUCT *) Emalloc (sizeof (CHISTRUCT));
Expand All @@ -2348,19 +2348,19 @@ CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, FLOAT64 Alpha) {
* @note Exceptions: none
* @note History: Fri Aug 4 11:08:59 1989, DSJ, Created.
*/
FLOAT64
double
Solve (SOLVEFUNC Function,
void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy)
void *FunctionParams, double InitialGuess, double Accuracy)
#define INITIALDELTA 0.1
#define DELTARATIO 0.1
{
FLOAT64 x;
FLOAT64 f;
FLOAT64 Slope;
FLOAT64 Delta;
FLOAT64 NewDelta;
FLOAT64 xDelta;
FLOAT64 LastPosX, LastNegX;
double x;
double f;
double Slope;
double Delta;
double NewDelta;
double xDelta;
double LastPosX, LastNegX;

x = InitialGuess;
Delta = INITIALDELTA;
Expand Down Expand Up @@ -2415,11 +2415,11 @@ void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy)
* @note Exceptions: none
* @note History: Fri Aug 4 12:48:41 1989, DSJ, Created.
*/
FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x) {
double ChiArea(CHISTRUCT *ChiParams, double x) {
int i, N;
FLOAT64 SeriesTotal;
FLOAT64 Denominator;
FLOAT64 PowerOfx;
double SeriesTotal;
double Denominator;
double PowerOfx;

N = ChiParams->DegreesOfFreedom / 2 - 1;
SeriesTotal = 1;
Expand Down
2 changes: 1 addition & 1 deletion src/classify/cluster.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ typedef struct { // parameters to control clustering
FLOAT32 MaxIllegal; // max percentage of samples in a cluster which have
// more than 1 feature in that cluster
FLOAT32 Independence; // desired independence between dimensions
FLOAT64 Confidence; // desired confidence in prototypes created
double Confidence; // desired confidence in prototypes created
int MagicSamples; // Ideal number of samples in a cluster.
} CLUSTERCONFIG;

Expand Down
6 changes: 3 additions & 3 deletions src/classify/kdtree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ void KDTreeSearch::Search(int *result_count,
for (int j = 0; j < count; j++) {
// Pre-cast to float64 as key is a template type and we have no control
// over its actual type.
distances[j] = (FLOAT32)sqrt((FLOAT64)results_.elements()[j].key);
distances[j] = (FLOAT32)sqrt((double)results_.elements()[j].key);
results[j] = results_.elements()[j].value;
}
}
Expand Down Expand Up @@ -478,8 +478,8 @@ FLOAT32 ComputeDistance(int k, PARAM_DESC *dim, FLOAT32 p1[], FLOAT32 p2[]) {
bool KDTreeSearch::BoxIntersectsSearch(FLOAT32 *lower, FLOAT32 *upper) {
FLOAT32 *query = query_point_;
// Compute the sum in higher precision.
FLOAT64 total_distance = 0.0;
FLOAT64 radius_squared =
double total_distance = 0.0;
double radius_squared =
results_.max_insertable_key() * results_.max_insertable_key();
PARAM_DESC *dim = tree_->KeyDesc;

Expand Down
6 changes: 3 additions & 3 deletions src/dict/stopper.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -465,9 +465,9 @@ int Dict::UniformCertainties(const WERD_CHOICE& word) {
float Certainty;
float WorstCertainty = MAX_FLOAT32;
float CertaintyThreshold;
FLOAT64 TotalCertainty;
FLOAT64 TotalCertaintySquared;
FLOAT64 Variance;
double TotalCertainty;
double TotalCertaintySquared;
double Variance;
FLOAT32 Mean, StdDev;
int word_length = word.length();

Expand Down

0 comments on commit 919901e

Please sign in to comment.