Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[demo] add a distributed training demo on movielens for dynamic_embedding #61

Merged
merged 1 commit into from
May 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions demo/movielens-1m-ps/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# A distributed training demo for `tfra.dynamic_embedding`:

- dataset: [movielen/1m-ratings](https://www.tensorflow.org/datasets/catalog/movielens#movielens1m-ratings)
- model: DNN
- Running mode: Graph mode by using MonitoredTrainingSession

## start train:
By default, this shell will start a train task with 2 PS and 2 workers on local machine.

```shell
sh start.sh
```

## stop train:

```shell
sh stop.sh
```
211 changes: 211 additions & 0 deletions demo/movielens-1m-ps/movielens-1m-ps.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
import os, sys
import tensorflow as tf
from tensorflow.keras.layers import Dense
import tensorflow_datasets as tfds
import tensorflow_recommenders_addons as tfra

tf.compat.v1.disable_v2_behavior()
rhdong marked this conversation as resolved.
Show resolved Hide resolved

flags = tf.compat.v1.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
'ps_list', "localhost:2220, localhost:2221",
'ps_list: to be a comma seperated string, '
'like "localhost:2220, localhost:2220"')
flags.DEFINE_string(
'worker_list', "localhost:2230",
'worker_list: to be a comma seperated string, '
'like "localhost:2230, localhost:2231"')
flags.DEFINE_string('task_mode', "worker", 'runninig_mode: ps or worker.')
flags.DEFINE_integer('task_id', 0, 'task_id: used for allocating samples.')
flags.DEFINE_bool('is_chief', False, ''
': If true, will run init_op and save/restore.')


class Trainer():

def __init__(self, worker_id, worker_num, ps_num, batch_size, ckpt_dir=None):
self.embedding_size = 32
self.worker_id = worker_id
self.worker_num = worker_num
self.batch_size = batch_size
self.devices = [
"/job:ps/replica:0/task:{}".format(idx) for idx in range(ps_num)
]
self.ckpt_dir = ckpt_dir
if self.ckpt_dir:
os.makedirs(os.path.split(self.ckpt_dir)[0], exist_ok=True)

def read_batch(self):
split_size = int(100 / self.worker_num)
split_start = split_size * self.worker_id
split = 'train[{}%:{}%]'.format(split_start, split_start + split_size - 1)
print("dataset split, worker{}: {}".format(self.worker_id, split))
ratings = tfds.load("movielens/1m-ratings", split=split)
ratings = ratings.map(
lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"], tf.int64),
"user_id": tf.strings.to_number(x["user_id"], tf.int64),
"user_rating": x["user_rating"]
})
shuffled = ratings.shuffle(1_000_000,
seed=2021,
reshuffle_each_iteration=False)
dataset_train = shuffled.batch(self.batch_size)
train_iter = tf.compat.v1.data.make_initializable_iterator(dataset_train)
return train_iter

def build_graph(self, batch):
movie_id = batch["movie_id"]
user_id = batch["user_id"]
rating = batch["user_rating"]

d0 = Dense(256,
activation='relu',
kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1),
bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1))
d1 = Dense(64,
activation='relu',
kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1),
bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1))
d2 = Dense(1,
kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1),
bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1))
user_embeddings = tfra.dynamic_embedding.get_variable(
name="user_dynamic_embeddings",
dim=self.embedding_size,
devices=self.devices,
initializer=tf.keras.initializers.RandomNormal(-1, 1))
movie_embeddings = tfra.dynamic_embedding.get_variable(
name="moive_dynamic_embeddings",
dim=self.embedding_size,
devices=self.devices,
initializer=tf.keras.initializers.RandomNormal(-1, 1))

user_id_val, user_id_idx = tf.unique(user_id)
user_id_weights, user_id_trainable_wrapper = tfra.dynamic_embedding.embedding_lookup(
params=user_embeddings,
ids=user_id_val,
name="user-id-weights",
return_trainable=True)
user_id_weights = tf.gather(user_id_weights, user_id_idx)

movie_id_val, movie_id_idx = tf.unique(movie_id)
movie_id_weights, movie_id_trainable_wrapper = tfra.dynamic_embedding.embedding_lookup(
params=movie_embeddings,
ids=movie_id_val,
name="movie-id-weights",
return_trainable=True)
movie_id_weights = tf.gather(movie_id_weights, movie_id_idx)

embeddings = tf.concat([user_id_weights, movie_id_weights], axis=1)
dnn = d0(embeddings)
dnn = d1(dnn)
dnn = d2(dnn)
predict = tf.reshape(dnn, shape=[-1])
loss = tf.keras.losses.MeanSquaredError()(rating, predict)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.001)
optimizer = tfra.dynamic_embedding.DynamicEmbeddingOptimizer(optimizer)
update = optimizer.minimize(
loss, global_step=tf.compat.v1.train.get_or_create_global_step())
return {
"update": update,
"predict": predict,
"loss": loss,
"size": user_embeddings.size(),
}


def start_worker(worker_id, config):
print("worker config", config)
ps_list = config['cluster']['ps']
worker_list = config['cluster']['worker']

num_ps_tasks = len(ps_list)
num_worker_tasks = len(worker_list)
sess_config = tf.compat.v1.ConfigProto()
sess_config.intra_op_parallelism_threads = 1
sess_config.inter_op_parallelism_threads = 1
cluster = tf.train.ClusterSpec(config['cluster'])
server = tf.distribute.Server(cluster,
protocol="grpc",
job_name="worker",
task_index=worker_id,
config=sess_config)
with tf.compat.v1.device("/job:worker/replica:0/task:{}".format(worker_id)):
trainer = Trainer(worker_id=worker_id,
worker_num=num_worker_tasks,
ps_num=num_ps_tasks,
batch_size=64,
ckpt_dir=None)
train_iter = trainer.read_batch()
train_data = train_iter.get_next()

device_setter = tf.compat.v1.train.replica_device_setter(
ps_tasks=num_ps_tasks,
worker_device="/job:worker/replica:0/task:{}".format(worker_id),
ps_device="/job:ps")

with tf.compat.v1.device(device_setter):
outputs = trainer.build_graph(train_data)

with tf.compat.v1.train.MonitoredTrainingSession(
master=server.target,
is_chief=FLAGS.is_chief,
checkpoint_dir=trainer.ckpt_dir if FLAGS.is_chief else None,
config=sess_config,
) as sess:
sess.run([train_iter.initializer])

step = 0
while True:
step += 1
try:
_, _loss, _pred = sess.run(
[outputs["update"], outputs["loss"], outputs["predict"]])

_size = sess.run(outputs["size"])
if step % 100 == 0:
print("[worker{}]step{}:\tloss={:.4f}\t size={}".format(
worker_id, step, float(_loss), _size))
except tf.errors.OutOfRangeError:
print("[worker{}]no more data!".format(worker_id))
break


def start_ps(task_id, config):
print("ps config", config)
cluster = tf.train.ClusterSpec(config["cluster"])

sess_config = tf.compat.v1.ConfigProto()
sess_config.intra_op_parallelism_threads = 1
sess_config.inter_op_parallelism_threads = 1
server = tf.distribute.Server(cluster,
config=sess_config,
protocol='grpc',
job_name="ps",
task_index=task_id)
server.join()


def main(argv):
ps_list = FLAGS.ps_list.replace(' ', '').split(',')
worker_list = FLAGS.worker_list.replace(' ', '').split(',')
task_mode = FLAGS.task_mode
task_id = FLAGS.task_id

print('ps_list: ', ps_list)
print('worker_list: ', worker_list)

cluster_config = {"cluster": {"ps": ps_list, "worker": worker_list}}
if task_mode == 'ps':
start_ps(task_id, cluster_config)
elif task_mode == 'worker':
start_worker(task_id, cluster_config)
else:
print('invalid task_mode. Options include "ps" and "worker".')
sys.exit(1)


if __name__ == "__main__":
tf.compat.v1.app.run()
12 changes: 12 additions & 0 deletions demo/movielens-1m-ps/start.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
#!/bin/bash
rm -rf ./ckpt
sh stop.sh
sleep 1
python movielens-1m-ps.py --ps_list="localhost:2220,localhost:2221" --worker_list="localhost:2230,localhost:2231" --task_mode="ps" --task_id=0 &
sleep 1
python movielens-1m-ps.py --ps_list="localhost:2220,localhost:2221" --worker_list="localhost:2230,localhost:2231" --task_mode="ps" --task_id=1 &
sleep 1
python movielens-1m-ps.py --ps_list="localhost:2220,localhost:2221" --worker_list="localhost:2230,localhost:2231" --task_mode="worker" --task_id=1 --is_chief=False &
sleep 1
python movielens-1m-ps.py --ps_list="localhost:2220,localhost:2221" --worker_list="localhost:2230,localhost:2231" --task_mode="worker" --task_id=0 --is_chief=True &
echo "ok"
4 changes: 4 additions & 0 deletions demo/movielens-1m-ps/stop.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
ps -ef|grep "movielens-"|grep -v grep|awk '{print $2}'| xargs kill -9
sleep 1
echo "result"
ps -ef|grep "movielens-"