-
Notifications
You must be signed in to change notification settings - Fork 138
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add GPU operator: sparse_fill_empty_rows and sparse_reshape
- Loading branch information
Showing
13 changed files
with
1,030 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
61 changes: 61 additions & 0 deletions
61
tensorflow_recommenders_addons/dynamic_embedding/core/kernels/sparse_fill_empty_rows_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#define EIGEN_USE_THREADS | ||
|
||
#include "sparse_fill_empty_rows_op.h" | ||
|
||
#include <algorithm> | ||
#include <numeric> | ||
#include <unordered_map> | ||
#include <utility> | ||
#include <vector> | ||
|
||
#include "tensorflow/core/framework/op_kernel.h" | ||
#include "tensorflow/core/framework/register_types.h" | ||
#include "tensorflow/core/framework/tensor.h" | ||
#include "tensorflow/core/framework/tensor_util.h" | ||
#include "tensorflow/core/framework/types.h" | ||
#include "tensorflow/core/lib/gtl/inlined_vector.h" | ||
#include "tensorflow/core/util/sparse/sparse_tensor.h" | ||
|
||
namespace tensorflow { | ||
|
||
using GPUDevice = Eigen::GpuDevice; | ||
|
||
template <typename Device, typename T> | ||
class SparseFillEmptyRowsOp : public OpKernel { | ||
public: | ||
explicit SparseFillEmptyRowsOp(OpKernelConstruction* context) | ||
: OpKernel(context) {} | ||
|
||
void Compute(OpKernelContext* context) override { | ||
functor::SparseFillEmptyRowsFunctor<Device, T>()(context); | ||
} | ||
}; | ||
|
||
#if GOOGLE_CUDA | ||
#define REGISTER_KERNELS(type) \ | ||
REGISTER_KERNEL_BUILDER(Name("TFRA>SparseFillEmptyRows") \ | ||
.Device(DEVICE_GPU) \ | ||
.TypeConstraint<type>("T"), \ | ||
SparseFillEmptyRowsOp<GPUDevice, type>) | ||
TF_CALL_int32(REGISTER_KERNELS); | ||
TF_CALL_int64(REGISTER_KERNELS); | ||
TF_CALL_float(REGISTER_KERNELS); | ||
TF_CALL_double(REGISTER_KERNELS); | ||
#undef REGISTER_KERNELS | ||
#endif | ||
} // namespace tensorflow |
276 changes: 276 additions & 0 deletions
276
...orflow_recommenders_addons/dynamic_embedding/core/kernels/sparse_fill_empty_rows_op.cu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifdef GOOGLE_CUDA | ||
|
||
#define EIGEN_USE_GPU | ||
|
||
#include <algorithm> | ||
#include <numeric> | ||
#include <unordered_map> | ||
#include <utility> | ||
#include <vector> | ||
|
||
#include "cub/device/device_scan.cuh" | ||
#include "sparse_fill_empty_rows_op.h" | ||
#include "tensorflow/core/framework/op_kernel.h" | ||
#include "tensorflow/core/framework/register_types.h" | ||
#include "tensorflow/core/framework/tensor.h" | ||
#include "tensorflow/core/framework/tensor_util.h" | ||
#include "tensorflow/core/framework/types.h" | ||
#include "tensorflow/core/lib/gtl/inlined_vector.h" | ||
#include "tensorflow/core/util/gpu_kernel_helper.h" | ||
|
||
namespace tensorflow { | ||
|
||
using GPUDevice = Eigen::GpuDevice; | ||
|
||
// calculate how many rows are empty and record their location | ||
__global__ void SparseFillEmptyRowCountKernel( | ||
const int64* indices, const int nnz, const int64* input_shape, | ||
int* row_nnz_count, // size: num_rows | ||
int64* input_row_offset, // size: num_rows + 1 | ||
int64* output_row_offset // size: num_rows + 1 | ||
) { | ||
GPU_1D_KERNEL_LOOP(idx, nnz) { | ||
const int64 num_rows = input_shape[0]; | ||
|
||
int64 _row = indices[idx * 2]; | ||
atomicAdd(row_nnz_count + _row, 1); | ||
} | ||
} | ||
|
||
__global__ void SparseFillEmptyRowAddOneKernel(const int64* input_shape, | ||
int* row_nnz_count) { | ||
const int64 num_rows = input_shape[0]; | ||
GPU_1D_KERNEL_LOOP(id_row, num_rows) { | ||
if (row_nnz_count[id_row] == 0) { | ||
row_nnz_count[id_row] += 1; | ||
} | ||
} | ||
} | ||
|
||
// copy the original data to output data address and fill default value to empty | ||
// rows | ||
template <class T> | ||
__global__ void SparseFillEmptyRowFillKernel( | ||
// inputs | ||
const int64* input_indices, const T* input_values, const int64* input_shape, | ||
const T* default_value, const int64* input_row_offset, | ||
const int64* output_row_offset, | ||
// outputs | ||
int64* output_indices, T* output_values, bool* empty_row_indicator, | ||
int64* reverse_index_map) { | ||
const int64 num_rows = input_shape[0]; | ||
GPU_1D_KERNEL_LOOP(id_row, num_rows) { | ||
#pragma unroll | ||
for (int i = 0; i < input_row_offset[id_row + 1] - input_row_offset[id_row]; | ||
i++) { | ||
output_values[output_row_offset[id_row] + i] = | ||
input_values[input_row_offset[id_row] + i]; | ||
output_indices[2 * (output_row_offset[id_row] + i) + 0] = | ||
id_row; // no need to read indices from input again; | ||
output_indices[2 * (output_row_offset[id_row] + i) + 1] = | ||
input_indices[2 * (input_row_offset[id_row] + i) + 1]; | ||
if (reverse_index_map) { | ||
reverse_index_map[input_row_offset[id_row] + i] = | ||
output_row_offset[id_row] + i; | ||
} | ||
} | ||
|
||
// for empty rows | ||
if (input_row_offset[id_row + 1] == input_row_offset[id_row]) { | ||
// insert default value | ||
output_values[output_row_offset[id_row]] = *default_value; | ||
output_indices[2 * output_row_offset[id_row] + 0] = id_row; | ||
output_indices[2 * output_row_offset[id_row] + 1] = 0; | ||
|
||
// mark as empty | ||
if (empty_row_indicator) { | ||
empty_row_indicator[id_row] = true; | ||
} | ||
} | ||
} | ||
return; | ||
} | ||
|
||
namespace functor { | ||
template <typename T> | ||
void SparseFillEmptyRowsGpuImpl(OpKernelContext* context, | ||
const int64* input_indices, | ||
const T* input_values, const int64 nnz, | ||
const int64* input_shape, | ||
const T* default_value) { | ||
auto d = context->eigen_gpu_device(); | ||
auto OpStream = d.stream(); | ||
int64 dense_row_number; | ||
|
||
// get the dense shape, which is stored in GPU. | ||
// If the dense shape is already in CPU, we don't need to do the copy here. | ||
cudaMemcpyAsync(&dense_row_number, input_shape, sizeof(int64), | ||
cudaMemcpyDeviceToHost, OpStream); | ||
cudaStreamSynchronize(OpStream); | ||
|
||
// temp vector to store start index of each row | ||
Tensor input_row_offset; | ||
Tensor output_row_offset; | ||
Tensor row_nnz_count; // temp buffer for the count kernel, count number of | ||
// non-zero values on each row. | ||
|
||
// the size of input_row_offset and output_row_offset is dense_row_number+1, | ||
// because we need one extra place to store the initial value of the offset 0 | ||
OP_REQUIRES_OK(context, context->allocate_temp( | ||
DT_INT64, TensorShape({dense_row_number + 1}), | ||
&input_row_offset)); | ||
|
||
OP_REQUIRES_OK(context, context->allocate_temp( | ||
DT_INT64, TensorShape({dense_row_number + 1}), | ||
&output_row_offset)); | ||
|
||
OP_REQUIRES_OK( | ||
context, context->allocate_temp( | ||
// use DT_INT32 instead of DT_INT64, because CUDA atomic_add | ||
// only support int32 | ||
DT_INT32, TensorShape({dense_row_number}), &row_nnz_count)); | ||
|
||
cudaMemset(row_nnz_count.flat<int>().data(), 0, | ||
sizeof(int) * dense_row_number); | ||
cudaMemset(input_row_offset.flat<int64>().data(), 0, sizeof(int64)); | ||
cudaMemset(output_row_offset.flat<int64>().data(), 0, sizeof(int64)); | ||
|
||
// Get the number of rows in each row | ||
GpuLaunchConfig count_kernel_config = GetGpuLaunchConfig(nnz, d); | ||
TF_CHECK_OK(GpuLaunchKernel( | ||
SparseFillEmptyRowCountKernel, count_kernel_config.block_count, | ||
count_kernel_config.thread_per_block, 0, d.stream(), input_indices, nnz, | ||
input_shape, row_nnz_count.flat<int>().data(), | ||
input_row_offset.flat<int64>().data(), | ||
output_row_offset.flat<int64>().data())); | ||
|
||
/* Calculate the offset of each row of input | ||
* example: the number of rows in each row: [3, 4, 0, 0, 6] | ||
* the offset of each row of input: [0, 3, 7, 7, 7, 13] | ||
*/ | ||
// Determine temporary device storage requirements for inclusive prefix sum | ||
size_t temp_storage_bytes = 0; | ||
cub::DeviceScan::InclusiveSum( | ||
NULL, temp_storage_bytes, row_nnz_count.flat<int>().data(), | ||
input_row_offset.flat<int64>().data() + 1, dense_row_number); | ||
|
||
// Allocate temporary storage for inclusive prefix sum | ||
Tensor temp_storage; | ||
OP_REQUIRES_OK( | ||
context, | ||
context->allocate_temp( | ||
DT_INT8, TensorShape({static_cast<int64>(temp_storage_bytes)}), | ||
&temp_storage)); | ||
void* d_temp_storage = temp_storage.flat<int8>().data(); | ||
|
||
// Run inclusive prefix sum | ||
cub::DeviceScan::InclusiveSum( | ||
d_temp_storage, temp_storage_bytes, row_nnz_count.flat<int>().data(), | ||
input_row_offset.flat<int64>().data() + 1, dense_row_number); | ||
|
||
/* Add 1 to the row whose row count is 0 | ||
* example: the number of rows in each row(row_nnz_count): [3, 4, 0, 0, 6] | ||
* row_nnz_count after the kernel: [3, 4, 1, 1, 6] | ||
*/ | ||
GpuLaunchConfig add_kernel_config = GetGpuLaunchConfig(nnz, d); | ||
TF_CHECK_OK(GpuLaunchKernel( | ||
SparseFillEmptyRowAddOneKernel, count_kernel_config.block_count, | ||
count_kernel_config.thread_per_block, 0, d.stream(), input_shape, | ||
row_nnz_count.flat<int>().data())); | ||
|
||
// Calculate the offset of each row of output | ||
cub::DeviceScan::InclusiveSum( | ||
d_temp_storage, temp_storage_bytes, row_nnz_count.flat<int>().data(), | ||
output_row_offset.flat<int64>().data() + 1, dense_row_number); | ||
|
||
// Read the output size from GPU, which is result of the first kernel. | ||
// copy nnz + num_of_empty_row = output_nnz to CPU | ||
int64 output_nnz; | ||
cudaMemcpyAsync(&output_nnz, | ||
output_row_offset.flat<int64>().data() + dense_row_number, | ||
sizeof(int64), cudaMemcpyDeviceToHost, OpStream); | ||
cudaStreamSynchronize(OpStream); | ||
|
||
// Allocate output tensors. | ||
Tensor* output_indices; | ||
Tensor* output_values; | ||
OP_REQUIRES_OK(context, | ||
context->allocate_output(0, TensorShape({output_nnz, 2}), | ||
&output_indices)); | ||
OP_REQUIRES_OK(context, context->allocate_output(1, TensorShape({output_nnz}), | ||
&output_values)); | ||
|
||
bool* empty_row_indicator = nullptr; | ||
if (context->output_required(2)) { | ||
Tensor* empty_row_indicator_t = nullptr; | ||
OP_REQUIRES_OK(context, | ||
context->allocate_output(2, TensorShape({dense_row_number}), | ||
&empty_row_indicator_t)); | ||
empty_row_indicator = empty_row_indicator_t->vec<bool>().data(); | ||
// assume row not empty first | ||
cudaMemset(empty_row_indicator, false, sizeof(bool) * dense_row_number); | ||
} | ||
|
||
int64* reverse_index_map = nullptr; | ||
if (context->output_required(3)) { | ||
Tensor* reverse_index_map_t = nullptr; | ||
OP_REQUIRES_OK(context, context->allocate_output(3, TensorShape({nnz}), | ||
&reverse_index_map_t)); | ||
reverse_index_map = reverse_index_map_t->vec<int64>().data(); | ||
} | ||
|
||
// Launch the second Kernel to move data and insert value to empty rows. | ||
GpuLaunchConfig config = GetGpuLaunchConfig(dense_row_number, d); | ||
TF_CHECK_OK(GpuLaunchKernel( | ||
SparseFillEmptyRowFillKernel<T>, config.block_count, | ||
config.thread_per_block, 0, d.stream(), input_indices, input_values, | ||
input_shape, default_value, input_row_offset.flat<int64>().data(), | ||
output_row_offset.flat<int64>().data(), | ||
output_indices->flat<int64>().data(), output_values->flat<T>().data(), | ||
empty_row_indicator, reverse_index_map)); | ||
} | ||
|
||
template <typename T> | ||
struct SparseFillEmptyRowsFunctor<GPUDevice, T> { | ||
void operator()(OpKernelContext* context) { | ||
auto input_indices = context->input(0); | ||
auto input_values = context->input(1); | ||
auto input_shape = context->input(2); | ||
auto default_value = context->input(3); | ||
|
||
const int64 nnz = input_indices.shape().dim_size(0); | ||
|
||
SparseFillEmptyRowsGpuImpl<T>(context, input_indices.flat<int64>().data(), | ||
input_values.flat<T>().data(), nnz, | ||
input_shape.flat<int64>().data(), | ||
default_value.flat<T>().data()); | ||
} | ||
}; | ||
|
||
#define DEFINE_GPU_KERNELS(type) \ | ||
template struct SparseFillEmptyRowsFunctor<GPUDevice, type>; | ||
|
||
TF_CALL_int32(DEFINE_GPU_KERNELS); | ||
TF_CALL_int64(DEFINE_GPU_KERNELS); | ||
TF_CALL_float(DEFINE_GPU_KERNELS); | ||
TF_CALL_double(DEFINE_GPU_KERNELS); | ||
|
||
} // namespace functor | ||
} // namespace tensorflow | ||
|
||
#endif |
Oops, something went wrong.