Skip to content

Commit

Permalink
add warm-start util
Browse files Browse the repository at this point in the history
  • Loading branch information
dakabang committed Mar 7, 2022
1 parent 6872e62 commit a2915cf
Show file tree
Hide file tree
Showing 3 changed files with 414 additions and 0 deletions.
2 changes: 2 additions & 0 deletions tensorflow_recommenders_addons/dynamic_embedding/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@
Variable,)
from tensorflow_recommenders_addons.dynamic_embedding.python.ops.dynamic_embedding_variable import (
GraphKeys,)
from tensorflow_recommenders_addons.dynamic_embedding.python.ops.warm_start_util import (
warm_start, WarmStartHook)
from tensorflow_recommenders_addons.dynamic_embedding.python.ops.restrict_policies import (
RestrictPolicy,
TimestampRestrictPolicy,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests of warm-start util"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import glob
import itertools
import math
import numpy as np
import os
import shutil

from tensorflow_recommenders_addons import dynamic_embedding as de

try:
from tensorflow.python.keras.initializers import initializers_v2 as kinit2
except ImportError:
kinit2 = None
pass # for compatible with TF < 2.3.x

from tensorflow.core.protobuf import cluster_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.keras import initializers as keras_init_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resources
from tensorflow.python.ops import script_ops
from tensorflow.python.ops import variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import test
from tensorflow.python.training import device_setter
from tensorflow.python.training import saver
from tensorflow.python.training import server_lib
from tensorflow.python.util import compat
from tensorflow_recommenders_addons import dynamic_embedding as de

import tensorflow as tf


@test_util.deprecated_graph_mode_only
class WarmStartUtilTest(test.TestCase):

def _test_warm_start(self, num_shards, use_regex):
devices = ["/cpu:0" for _ in range(num_shards)]
ckpt_prefix = os.path.join(self.get_temp_dir(), "ckpt")
id_list = [x for x in range(100)]
val_list = [[x] for x in range(100)]

emb_name = "t100_{}_{}".format(num_shards, use_regex)
with self.session(graph=ops.Graph()) as sess:
embeddings = de.get_variable(emb_name,
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
ids = constant_op.constant(id_list, dtype=dtypes.int64)
vals = constant_op.constant(val_list, dtype=dtypes.float32)
self.evaluate(embeddings.upsert(ids, vals))
save = saver.Saver(var_list=[embeddings])
save.save(sess, ckpt_prefix)

with self.session(graph=ops.Graph()) as sess:
embeddings = de.get_variable(emb_name,
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
ids = constant_op.constant(id_list, dtype=dtypes.int64)
emb = de.embedding_lookup(embeddings, ids, name="lookup")
sess.graph.add_to_collection(de.GraphKeys.DYNAMIC_EMBEDDING_VARIABLES,
embeddings)
vars_to_warm_start = [embeddings]
if use_regex:
vars_to_warm_start = [".*t100.*"]

restore_op = de.warm_start(ckpt_to_initialize_from=ckpt_prefix,
vars_to_warm_start=vars_to_warm_start)
self.evaluate(restore_op)
self.assertAllEqual(emb, val_list)

def _test_warm_start_rename(self, num_shards, use_regex):
devices = ["/cpu:0" for _ in range(num_shards)]
ckpt_prefix = os.path.join(self.get_temp_dir(), "ckpt")
id_list = [x for x in range(100)]
val_list = [[x] for x in range(100)]

emb_name = "t200_{}_{}".format(num_shards, use_regex)
with self.session(graph=ops.Graph()) as sess:
embeddings = de.get_variable("save_{}".format(emb_name),
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
ids = constant_op.constant(id_list, dtype=dtypes.int64)
vals = constant_op.constant(val_list, dtype=dtypes.float32)
self.evaluate(embeddings.upsert(ids, vals))
save = saver.Saver(var_list=[embeddings])
save.save(sess, ckpt_prefix)

with self.session(graph=ops.Graph()) as sess:
embeddings = de.get_variable("restore_{}".format(emb_name),
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
ids = constant_op.constant(id_list, dtype=dtypes.int64)
emb = de.embedding_lookup(embeddings, ids, name="lookup")
sess.graph.add_to_collection(de.GraphKeys.DYNAMIC_EMBEDDING_VARIABLES,
embeddings)
vars_to_warm_start = [embeddings]
if use_regex:
vars_to_warm_start = [".*t200.*"]

restore_op = de.warm_start(ckpt_to_initialize_from=ckpt_prefix,
vars_to_warm_start=vars_to_warm_start,
var_name_to_prev_var_name={
"restore_{}".format(emb_name):
"save_{}".format(emb_name)
})
self.evaluate(restore_op)
self.assertAllEqual(emb, val_list)

def _test_warm_start_estimator(self, num_shards, use_regex):
devices = ["/cpu:0" for _ in range(num_shards)]
ckpt_prefix = os.path.join(self.get_temp_dir(), "ckpt")
id_list = [x for x in range(100)]
val_list = [[x] for x in range(100)]

emb_name = "t300_{}_{}".format(num_shards, use_regex)
with self.session(graph=ops.Graph()) as sess:
embeddings = de.get_variable(emb_name,
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
ids = constant_op.constant(id_list, dtype=dtypes.int64)
vals = constant_op.constant(val_list, dtype=dtypes.float32)
self.evaluate(embeddings.upsert(ids, vals))
save = saver.Saver(var_list=[embeddings])
save.save(sess, ckpt_prefix)

def _input_fn():
dataset = tf.data.Dataset.from_tensor_slices({
'ids':
constant_op.constant([[x] for x in id_list], dtype=dtypes.int64)
})
return dataset

def _model_fn(features, labels, mode, params):
ids = features['ids']
embeddings = de.get_variable(emb_name,
dtypes.int64,
dtypes.float32,
devices=devices,
initializer=0.0)
emb = de.embedding_lookup(embeddings, ids, name="lookup")
emb.graph.add_to_collection(de.GraphKeys.DYNAMIC_EMBEDDING_VARIABLES,
embeddings)
vars_to_warm_start = [embeddings]
if use_regex:
vars_to_warm_start = [".*t300.*"]

warm_start_hook = de.WarmStartHook(ckpt_to_initialize_from=ckpt_prefix,
vars_to_warm_start=vars_to_warm_start)
return tf.estimator.EstimatorSpec(mode=tf.estimator.ModeKeys.PREDICT,
predictions=emb,
prediction_hooks=[warm_start_hook])

predictor = tf.estimator.Estimator(model_fn=_model_fn)
predictions = predictor.predict(_input_fn)
pred_vals = []
for pred in predictions:
pred_vals.append(pred)
self.assertAllEqual(pred_vals, val_list)

def test_warm_start(self):
for num_shards in [1, 3]:
self._test_warm_start(num_shards, True)
self._test_warm_start(num_shards, False)

def test_warm_start_rename(self):
for num_shards in [1, 3]:
self._test_warm_start_rename(num_shards, True)
self._test_warm_start_rename(num_shards, False)

def test_warm_start_estimator(self):
for num_shards in [1, 3]:
self._test_warm_start_estimator(num_shards, True)
self._test_warm_start_estimator(num_shards, False)


if __name__ == "__main__":
test.main()
Loading

0 comments on commit a2915cf

Please sign in to comment.