Skip to content

Commit

Permalink
Merge pull request #131 from lwsong:master
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 339012372
  • Loading branch information
tensorflower-gardener committed Oct 26, 2020
2 parents 1981ebe + 6e929da commit 67f7f35
Show file tree
Hide file tree
Showing 5 changed files with 52 additions and 3 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -114,11 +114,13 @@ class AttackType(enum.Enum):
RANDOM_FOREST = 'rf'
K_NEAREST_NEIGHBORS = 'knn'
THRESHOLD_ATTACK = 'threshold'
THRESHOLD_ENTROPY_ATTACK = 'threshold-entropy'

@property
def is_trained_attack(self):
"""Returns whether this type of attack requires training a model."""
return self != AttackType.THRESHOLD_ATTACK
return (self != AttackType.THRESHOLD_ATTACK) and (
self != AttackType.THRESHOLD_ENTROPY_ATTACK)

def __str__(self):
"""Returns LOGISTIC_REGRESSION instead of AttackType.LOGISTIC_REGRESSION."""
Expand Down Expand Up @@ -278,12 +280,16 @@ def get_train_size(self):
"""Returns size of the training set."""
if self.loss_train is not None:
return self.loss_train.size
if self.entropy_train is not None:
return self.entropy_train.size
return self.logits_or_probs_train.shape[0]

def get_test_size(self):
"""Returns size of the test set."""
if self.loss_test is not None:
return self.loss_test.size
if self.entropy_test is not None:
return self.entropy_test.size
return self.logits_or_probs_test.shape[0]

def validate(self):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,14 @@ def _slice_data_by_indices(data: AttackInputData, idx_train,
result.probs_train = _slice_if_not_none(data.probs_train, idx_train)
result.labels_train = _slice_if_not_none(data.labels_train, idx_train)
result.loss_train = _slice_if_not_none(data.loss_train, idx_train)
result.entropy_train = _slice_if_not_none(data.entropy_train, idx_train)

# Slice test data.
result.logits_test = _slice_if_not_none(data.logits_test, idx_test)
result.probs_test = _slice_if_not_none(data.probs_test, idx_test)
result.labels_test = _slice_if_not_none(data.labels_test, idx_test)
result.loss_test = _slice_if_not_none(data.loss_test, idx_test)
result.entropy_test = _slice_if_not_none(data.entropy_test, idx_test)

return result

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,8 @@ def __init__(self, methodname):
labels_test = np.array([1, 2, 0, 2])
loss_train = np.array([2, 0.25, 4, 3])
loss_test = np.array([0.5, 3.5, 7, 4.5])
entropy_train = np.array([0.4, 8, 0.6, 10])
entropy_test = np.array([15, 10.5, 4.5, 0.3])

self.input_data = AttackInputData(
logits_train=logits_train,
Expand All @@ -123,7 +125,9 @@ def __init__(self, methodname):
labels_train=labels_train,
labels_test=labels_test,
loss_train=loss_train,
loss_test=loss_test)
loss_test=loss_test,
entropy_train=entropy_train,
entropy_test=entropy_test)

def test_slice_entire_dataset(self):
entire_dataset_slice = SingleSliceSpec()
Expand Down Expand Up @@ -159,6 +163,12 @@ def test_slice_by_class(self):
self.assertTrue((output.loss_train == [2, 4]).all())
self.assertTrue((output.loss_test == [0.5]).all())

# Check entropy
self.assertLen(output.entropy_train, 2)
self.assertLen(output.entropy_test, 1)
self.assertTrue((output.entropy_train == [0.4, 0.6]).all())
self.assertTrue((output.entropy_test == [15]).all())

def test_slice_by_percentile(self):
percentile_slice = SingleSliceSpec(SlicingFeature.PERCENTILE, (0, 50))
output = get_slice(self.input_data, percentile_slice)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,14 +97,30 @@ def _run_threshold_attack(attack_input: AttackInputData):
roc_curve=roc_curve)


def _run_threshold_entropy_attack(attack_input: AttackInputData):
fpr, tpr, thresholds = metrics.roc_curve(
np.concatenate((np.zeros(attack_input.get_train_size()),
np.ones(attack_input.get_test_size()))),
np.concatenate(
(attack_input.get_entropy_train(), attack_input.get_entropy_test())))

roc_curve = RocCurve(tpr=tpr, fpr=fpr, thresholds=thresholds)

return SingleAttackResult(
slice_spec=_get_slice_spec(attack_input),
attack_type=AttackType.THRESHOLD_ENTROPY_ATTACK,
roc_curve=roc_curve)


def _run_attack(attack_input: AttackInputData,
attack_type: AttackType,
balance_attacker_training: bool = True):
attack_input.validate()
if attack_type.is_trained_attack:
return _run_trained_attack(attack_input, attack_type,
balance_attacker_training)

if attack_type == AttackType.THRESHOLD_ENTROPY_ATTACK:
return _run_threshold_entropy_attack(attack_input)
return _run_threshold_attack(attack_input)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,12 @@ def test_run_attack_threshold_sets_attack_type(self):

self.assertEqual(result.attack_type, AttackType.THRESHOLD_ATTACK)

def test_run_attack_threshold_entropy_sets_attack_type(self):
result = mia._run_attack(
get_test_input(100, 100), AttackType.THRESHOLD_ENTROPY_ATTACK)

self.assertEqual(result.attack_type, AttackType.THRESHOLD_ENTROPY_ATTACK)

def test_run_attack_threshold_calculates_correct_auc(self):
result = mia._run_attack(
AttackInputData(
Expand All @@ -64,6 +70,15 @@ def test_run_attack_threshold_calculates_correct_auc(self):

np.testing.assert_almost_equal(result.roc_curve.get_auc(), 0.83, decimal=2)

def test_run_attack_threshold_entropy_calculates_correct_auc(self):
result = mia._run_attack(
AttackInputData(
entropy_train=np.array([0.1, 0.2, 1.3, 0.4, 0.5, 0.6]),
entropy_test=np.array([1.1, 1.2, 1.3, 0.4, 1.5, 1.6])),
AttackType.THRESHOLD_ENTROPY_ATTACK)

np.testing.assert_almost_equal(result.roc_curve.get_auc(), 0.83, decimal=2)

def test_run_attack_by_slice(self):
result = mia.run_attacks(
get_test_input(100, 100), SlicingSpec(by_class=True),
Expand Down

0 comments on commit 67f7f35

Please sign in to comment.