Skip to content

Commit

Permalink
cleanup of deprecated test methods
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 715998857
  • Loading branch information
tensorflower-gardener committed Jan 16, 2025
1 parent 695c340 commit bd0daec
Show file tree
Hide file tree
Showing 5 changed files with 34 additions and 34 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -204,49 +204,49 @@ def test_unknown_shape_raises(self):
x = test_utils.get_tensor_with_random_shape()
stage = self.default_encoding_stage()
params, _ = stage.get_params()
with self.assertRaisesRegexp(ValueError, 'fully known'):
with self.assertRaisesRegex(ValueError, 'fully known'):
stage.encode(x, params)

@parameterized.parameters([((1, 1, 5),), ((1, 1, 1, 5),)])
def test_more_than_two_ndims_raises(self, dims):
x = tf.random.normal(dims)
stage = self.default_encoding_stage()
params, _ = stage.get_params()
with self.assertRaisesRegexp(ValueError, 'must be 1 or 2.'):
with self.assertRaisesRegex(ValueError, 'must be 1 or 2.'):
stage.encode(x, params)

@parameterized.parameters([0.0, 1.0, -1.0, 2.5])
def test_eta_out_of_bounds_raises(self, eta):
with self.assertRaisesRegexp(ValueError, 'between 0 and 1'):
with self.assertRaisesRegex(ValueError, 'between 0 and 1'):
kashin.KashinHadamardEncodingStage(eta=eta)

@parameterized.parameters([0.0, -1.0])
def test_delta_small_raises(self, delta):
with self.assertRaisesRegexp(ValueError, 'greater than 0'):
with self.assertRaisesRegex(ValueError, 'greater than 0'):
kashin.KashinHadamardEncodingStage(delta=delta)

@parameterized.parameters([0, -1, -10])
def test_num_iters_small_raises(self, num_iters):
with self.assertRaisesRegexp(ValueError, 'positive'):
with self.assertRaisesRegex(ValueError, 'positive'):
kashin.KashinHadamardEncodingStage(num_iters=num_iters)

def test_num_iters_tensor_raises(self):
with self.assertRaisesRegexp(ValueError, 'num_iters'):
with self.assertRaisesRegex(ValueError, 'num_iters'):
kashin.KashinHadamardEncodingStage(
num_iters=tf.constant(2, dtype=tf.int32))

def test_last_iter_clip_tensor_raises(self):
with self.assertRaisesRegexp(ValueError, 'last_iter_clip'):
with self.assertRaisesRegex(ValueError, 'last_iter_clip'):
kashin.KashinHadamardEncodingStage(
last_iter_clip=tf.constant(True, dtype=tf.bool))

@parameterized.parameters([0, 1, 0.0, 1.0])
def test_last_iter_clip_not_bool_raises(self, last_iter_clip):
with self.assertRaisesRegexp(ValueError, 'last_iter_clip must be a bool'):
with self.assertRaisesRegex(ValueError, 'last_iter_clip must be a bool'):
kashin.KashinHadamardEncodingStage(last_iter_clip=last_iter_clip)

def test_pad_extra_level_threshold_tensor_raises(self):
with self.assertRaisesRegexp(ValueError, 'pad_extra_level_threshold'):
with self.assertRaisesRegex(ValueError, 'pad_extra_level_threshold'):
kashin.KashinHadamardEncodingStage(
pad_extra_level_threshold=tf.constant(0.8, dtype=tf.float32))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -176,15 +176,15 @@ def test_empty_input_dynamic(self):
@parameterized.parameters([tf.bool, tf.float32])
def test_encode_unsupported_type_raises(self, dtype):
stage = self.default_encoding_stage()
with self.assertRaisesRegexp(TypeError, 'Unsupported input type'):
with self.assertRaisesRegex(TypeError, 'Unsupported input type'):
self.run_one_to_many_encode_decode(
stage, lambda: tf.cast(self.default_input(), dtype))

def test_encode_unsupported_input_shape_raises(self):
x = tf.random.uniform((3, 4), maxval=10, dtype=tf.int32)
stage = self.default_encoding_stage()
params, _ = stage.get_params()
with self.assertRaisesRegexp(ValueError, 'Number of dimensions must be 1'):
with self.assertRaisesRegex(ValueError, 'Number of dimensions must be 1'):
stage.encode(x, params)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def test_all_zero_input_works(self):

@parameterized.parameters([0, 17, -1, 1.5])
def test_bits_out_of_range_raises(self, bits):
with self.assertRaisesRegexp(ValueError, 'integer between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'integer between 1 and 16'):
quantization.PRNGUniformQuantizationEncodingStage(bits=bits)

def test_dynamic_input_shape(self):
Expand Down Expand Up @@ -226,11 +226,11 @@ def test_all_zero_input_works(self):

@parameterized.parameters([0, 17, -1, 1.5])
def test_bits_out_of_range_raises(self, bits):
with self.assertRaisesRegexp(ValueError, 'integer between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'integer between 1 and 16'):
quantization.PerChannelUniformQuantizationEncodingStage(bits=bits)

def test_stochastic_tensor_raises(self):
with self.assertRaisesRegexp(TypeError, 'stochastic'):
with self.assertRaisesRegex(TypeError, 'stochastic'):
quantization.PerChannelUniformQuantizationEncodingStage(
stochastic=tf.constant(True, dtype=tf.bool))

Expand Down Expand Up @@ -343,7 +343,7 @@ def test_all_zero_input_works(self):

@parameterized.parameters([0, 17, -1, 1.5])
def test_bits_out_of_range_raises(self, bits):
with self.assertRaisesRegexp(ValueError, 'integer between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'integer between 1 and 16'):
quantization.PerChannelPRNGUniformQuantizationEncodingStage(bits=bits)

def test_dynamic_input_shape(self):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -192,15 +192,15 @@ def test_unknown_shape_raises(self):
x = test_utils.get_tensor_with_random_shape()
stage = self.default_encoding_stage()
params, _ = stage.get_params()
with self.assertRaisesRegexp(ValueError, 'fully known'):
with self.assertRaisesRegex(ValueError, 'fully known'):
stage.encode(x, params)

@parameterized.parameters([((1, 1, 5),), ((1, 1, 1, 5),)])
def test_more_than_two_ndims_raises(self, dims):
x = tf.random.normal(dims)
stage = self.default_encoding_stage()
params, _ = stage.get_params()
with self.assertRaisesRegexp(ValueError, 'must be 1 or 2.'):
with self.assertRaisesRegex(ValueError, 'must be 1 or 2.'):
stage.encode(x, params)


Expand Down Expand Up @@ -336,27 +336,27 @@ def test_commutes_with_sum_given_min_max(self):

@parameterized.parameters([0, 17, -1, 1.5])
def test_bits_out_of_range_raises(self, bits):
with self.assertRaisesRegexp(ValueError, 'integer between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'integer between 1 and 16'):
stages_impl.UniformQuantizationEncodingStage(bits=bits)

@parameterized.parameters([1.0, ([1.0, 2.0, 3.0],)])
def test_bad_min_max_tensor_raises(self, bad_min_max):
with self.assertRaisesRegexp(ValueError, r'shape \(2\)'):
with self.assertRaisesRegex(ValueError, r'shape \(2\)'):
stages_impl.UniformQuantizationEncodingStage(
min_max=tf.constant(bad_min_max))

@parameterized.parameters([([1.0],), ([1.0, 2.0, 3.0],)])
def test_bad_min_max_python_shape_raises(self, bad_min_max):
with self.assertRaisesRegexp(ValueError, 'list with two elements'):
with self.assertRaisesRegex(ValueError, 'list with two elements'):
stages_impl.UniformQuantizationEncodingStage(min_max=bad_min_max)

@parameterized.parameters([([1.0, 1.0],), ([2.0, 1.0],)])
def test_bad_min_max_python_values_raises(self, bad_min_max):
with self.assertRaisesRegexp(ValueError, 'smaller than the second'):
with self.assertRaisesRegex(ValueError, 'smaller than the second'):
stages_impl.UniformQuantizationEncodingStage(min_max=bad_min_max)

def test_stochastic_tensor_raises(self):
with self.assertRaisesRegexp(TypeError, 'stochastic'):
with self.assertRaisesRegex(TypeError, 'stochastic'):
stages_impl.UniformQuantizationEncodingStage(
stochastic=tf.constant(True, dtype=tf.bool))

Expand Down Expand Up @@ -441,16 +441,16 @@ def test_bad_input_executes(self):
@parameterized.parameters([tf.bool, tf.int32])
def test_encode_unsupported_type_raises(self, dtype):
stage = self.default_encoding_stage()
with self.assertRaisesRegexp(TypeError, 'Unsupported packing type'):
with self.assertRaisesRegex(TypeError, 'Unsupported packing type'):
self.run_one_to_many_encode_decode(
stage, lambda: tf.cast(self.default_input(), dtype))

def test_bad_input_bits_raises(self):
with self.assertRaisesRegexp(TypeError, 'cannot be a TensorFlow value'):
with self.assertRaisesRegex(TypeError, 'cannot be a TensorFlow value'):
stages_impl.BitpackingEncodingStage(tf.constant(1, dtype=tf.int32))
with self.assertRaisesRegexp(ValueError, 'between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'between 1 and 16'):
stages_impl.BitpackingEncodingStage(0)
with self.assertRaisesRegexp(ValueError, 'between 1 and 16'):
with self.assertRaisesRegex(ValueError, 'between 1 and 16'):
stages_impl.BitpackingEncodingStage(17)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,15 +57,15 @@ def test_apply_twice_equals_identity(self, first_dim):
def test_illegal_inputs_shape(self, *dims):
"""Tests incorrect rank of the input."""
x = tf.random.normal(dims)
with self.assertRaisesRegexp(ValueError,
with self.assertRaisesRegex(ValueError,
'Number of dimensions of x must be 2.'):
tf_utils.fast_walsh_hadamard_transform(x)

@parameterized.parameters([[1, 3], [1, 7], [1, 9], [4, 3]])
def test_illegal_inputs_static_power_of_two(self, *dims):
"""Tests incorrect static shape of the rank 2 input."""
x = tf.random.normal(dims)
with self.assertRaisesRegexp(ValueError,
with self.assertRaisesRegex(ValueError,
'The dimension of x must be a power of two.'):
tf_utils.fast_walsh_hadamard_transform(x)

Expand Down Expand Up @@ -170,20 +170,20 @@ def test_approximately_uniform_distribution(self):
self.assertAllLessEqual(bucket_counts, 10250)

def test_tensor_num_elements_raises(self):
with self.assertRaisesRegexp(TypeError, 'must be a Python integer'):
with self.assertRaisesRegex(TypeError, 'must be a Python integer'):
tf_utils._cmwc_random_sequence(
tf.constant(10), tf.constant(123, tf.int64))

def test_negative_num_elements_raises(self):
with self.assertRaisesRegexp(ValueError, 'must be positive'):
with self.assertRaisesRegex(ValueError, 'must be positive'):
tf_utils._cmwc_random_sequence(-10, tf.constant(123, tf.int64))

def test_python_seed_raises(self):
with self.assertRaisesRegexp(TypeError, 'tf.int64 Tensor'):
with self.assertRaisesRegex(TypeError, 'tf.int64 Tensor'):
tf_utils._cmwc_random_sequence(10, 123)

def test_tf_int32_seed_raises(self):
with self.assertRaisesRegexp(TypeError, 'tf.int64 Tensor'):
with self.assertRaisesRegex(TypeError, 'tf.int64 Tensor'):
tf_utils._cmwc_random_sequence(10, tf.constant(123, tf.int32))


Expand Down Expand Up @@ -232,7 +232,7 @@ def test_expected_dtype(self, dtype):

@parameterized.parameters([tf.int32, tf.int64])
def test_type_error_raises(self, dtype):
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
TypeError, 'Supported types are tf.float32 and '
'tf.float64 values'):
tf_utils.random_floats_cmwc(10, tf.constant(456, tf.int64), dtype)
Expand Down Expand Up @@ -291,7 +291,7 @@ def test_expected_dtype(self, dtype):

@parameterized.parameters([tf.int32, tf.int64])
def test_type_error_raises(self, dtype):
with self.assertRaisesRegexp(TypeError,
with self.assertRaisesRegex(TypeError,
'Supported types are tf.float32 and '
'tf.float64 values'):
tf_utils.random_floats(10, tf.constant([456, 123], tf.int64), dtype)
Expand Down

0 comments on commit bd0daec

Please sign in to comment.