Skip to content

Commit

Permalink
Update all keras references to use the keras v2 version instance
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 603753268
  • Loading branch information
abattery authored and tensorflower-gardener committed Feb 2, 2024
1 parent 9533188 commit b0eea48
Show file tree
Hide file tree
Showing 143 changed files with 1,958 additions and 1,445 deletions.
6 changes: 3 additions & 3 deletions ci/kokoro/gcp_ubuntu/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@
# run CI against.

# Latest Ubuntu LTS (Focal), at the moment.
FROM ubuntu:20.04
FROM ubuntu:22.04

ARG BAZEL_VERSION=4.2.2
ARG TENSORFLOW_VERSION=2.12.0
ARG BAZEL_VERSION=7.0.2
ARG TENSORFLOW_VERSION=2.15.0


RUN apt-get update -y
Expand Down
4 changes: 1 addition & 3 deletions ci/kokoro/run_bazel_unittests.sh
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,7 @@ set -o pipefail # Treat the failure of a command in a pipeline as error.
# set -x

pip install --requirement "requirements.txt"
# TODO(b/232345872): Not in list of requirements, but needed for EPR test.
# The EPR test relies on a feature (PowerLawEntropyModel) introduced in 2.10.0.
pip install tensorflow-compression~=2.11.0
pip install tensorflow-compression>=2.11.0

# Run the tests.
# Some tests requiring more RAM than the CI machine provides are disabled.
Expand Down
3 changes: 2 additions & 1 deletion tensorflow_model_optimization/g3doc/_index.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,9 @@ landing_page:
<pre class = "prettyprint">
import tensorflow as tf
import tensorflow_model_optimization as tfmot
import tf_keras as keras
model = tf.keras.Sequential([...])
model = keras.Sequential([...])
pruning_schedule = tfmot.sparsity.keras.PolynomialDecay(
initial_sparsity=0.0, final_sparsity=0.5,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@
"! pip install -q tensorflow-model-optimization\n",
"\n",
"import tensorflow as tf\n",
"import tf_keras as keras\n",
"import numpy as np\n",
"import tempfile\n",
"import os\n",
Expand All @@ -110,18 +111,18 @@
"input_dim = 20\n",
"output_dim = 20\n",
"x_train = np.random.randn(1, input_dim).astype(np.float32)\n",
"y_train = tf.keras.utils.to_categorical(np.random.randn(1), num_classes=output_dim)\n",
"y_train = keras.utils.to_categorical(np.random.randn(1), num_classes=output_dim)\n",
"\n",
"def setup_model():\n",
" model = tf.keras.Sequential([\n",
" tf.keras.layers.Dense(input_dim, input_shape=[input_dim]),\n",
" tf.keras.layers.Flatten()\n",
" model = keras.Sequential([\n",
" keras.layers.Dense(input_dim, input_shape=[input_dim]),\n",
" keras.layers.Flatten()\n",
" ])\n",
" return model\n",
"\n",
"def train_model(model):\n",
" model.compile(\n",
" loss=tf.keras.losses.categorical_crossentropy,\n",
" loss=keras.losses.categorical_crossentropy,\n",
" optimizer='adam',\n",
" metrics=['accuracy']\n",
" )\n",
Expand Down Expand Up @@ -243,7 +244,7 @@
"**Tips** for better model accuracy:\n",
"\n",
"* You must pass a pre-trained model with acceptable accuracy to this API. Training models from scratch with clustering results in subpar accuracy.\n",
"* Cluster later layers with more redundant parameters (e.g. `tf.keras.layers.Dense`, `tf.keras.layers.Conv2D`), as opposed to the early layers.\n",
"* Cluster later layers with more redundant parameters (e.g. `keras.layers.Dense`, `keras.layers.Conv2D`), as opposed to the early layers.\n",
"* Freeze early layers prior to the clustered layers during fine-tuning. Treat the number of frozen layers as a hyperparameter. Empirically, freezing most early layers is ideal for the current clustering API.\n",
"* Avoid clustering critical layers (e.g. attention mechanism).\n",
"\n",
Expand All @@ -265,13 +266,13 @@
"# Helper function uses `cluster_weights` to make only \n",
"# the Dense layers train with clustering\n",
"def apply_clustering_to_dense(layer):\n",
" if isinstance(layer, tf.keras.layers.Dense):\n",
" if isinstance(layer, keras.layers.Dense):\n",
" return cluster_weights(layer, **clustering_params)\n",
" return layer\n",
"\n",
"# Use `tf.keras.models.clone_model` to apply `apply_clustering_to_dense` \n",
"# Use `keras.models.clone_model` to apply `apply_clustering_to_dense` \n",
"# to the layers of the model.\n",
"clustered_model = tf.keras.models.clone_model(\n",
"clustered_model = keras.models.clone_model(\n",
" base_model,\n",
" clone_function=apply_clustering_to_dense,\n",
")\n",
Expand Down Expand Up @@ -326,17 +327,17 @@
},
"outputs": [],
"source": [
"class MyDenseLayer(tf.keras.layers.Dense, tfmot.clustering.keras.ClusterableLayer):\n",
"class MyDenseLayer(keras.layers.Dense, tfmot.clustering.keras.ClusterableLayer):\n",
"\n",
" def get_clusterable_weights(self):\n",
" # Cluster kernel and bias. This is just an example, clustering\n",
" # bias usually hurts model accuracy.\n",
" return [('kernel', self.kernel), ('bias', self.bias)]\n",
"\n",
"# Use `cluster_weights` to make the `MyDenseLayer` layer train with clustering as usual.\n",
"model_for_clustering = tf.keras.Sequential([\n",
"model_for_clustering = keras.Sequential([\n",
" tfmot.clustering.keras.cluster_weights(MyDenseLayer(20, input_shape=[input_dim]), **clustering_params),\n",
" tf.keras.layers.Flatten()\n",
" keras.layers.Flatten()\n",
"])\n",
"\n",
"model_for_clustering.summary()"
Expand All @@ -348,7 +349,7 @@
"id": "SYlWPXEWmxTs"
},
"source": [
"You may also use `tfmot.clustering.keras.ClusterableLayer` to cluster a keras custom layer. To do this, you extend `tf.keras.Layer` as usual and implement the `__init__`, `call`, and `build` functions, but you also need to extend the `clusterable_layer.ClusterableLayer` class and implement:\n",
"You may also use `tfmot.clustering.keras.ClusterableLayer` to cluster a keras custom layer. To do this, you extend `keras.Layer` as usual and implement the `__init__`, `call`, and `build` functions, but you also need to extend the `clusterable_layer.ClusterableLayer` class and implement:\n",
"1. `get_clusterable_weights`, where you specify the weight kernel to be clustered, as shown above.\n",
"2. `get_clusterable_algorithm`, where you specify the clustering algorithm for the weight tensor. This is because you need to specify how the custom layer weights are shaped for clustering. The returned clustering algorithm class should be derived from the `clustering_algorithm.ClusteringAlgorithm` class and the function `get_pulling_indices` should be overwritten. An example of this function, which supports weights of ranks 1D, 2D, and 3D, can be found [here]( https://github.com/tensorflow/model-optimization/blob/18e87d262e536c9a742aef700880e71b47a7f768/tensorflow_model_optimization/python/core/clustering/keras/clustering_algorithm.py#L62).\n",
"\n",
Expand Down Expand Up @@ -392,7 +393,7 @@
"\n",
"# `cluster_scope` is needed for deserializing HDF5 models.\n",
"with tfmot.clustering.keras.cluster_scope():\n",
" loaded_model = tf.keras.models.load_model(keras_model_file)\n",
" loaded_model = keras.models.load_model(keras_model_file)\n",
"\n",
"loaded_model.summary()"
]
Expand Down Expand Up @@ -460,7 +461,7 @@
"clustered_model = cluster_weights(model, **clustering_params)\n",
"\n",
"clustered_model.compile(\n",
" loss=tf.keras.losses.categorical_crossentropy,\n",
" loss=keras.losses.categorical_crossentropy,\n",
" optimizer='adam',\n",
" metrics=['accuracy']\n",
")\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@
"\n",
"In the tutorial, you will:\n",
"\n",
"1. Train a `tf.keras` model for the MNIST dataset from scratch.\n",
"1. Train a `keras` model for the MNIST dataset from scratch.\n",
"2. Fine-tune the model by applying the weight clustering API and see the accuracy.\n",
"3. Create a 6x smaller TF and TFLite models from clustering.\n",
"4. Create a 8x smaller TFLite model from combining weight clustering and post-training quantization.\n",
Expand Down Expand Up @@ -120,7 +120,7 @@
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import tf_keras as keras\n",
"\n",
"import numpy as np\n",
"import tempfile\n",
Expand All @@ -134,7 +134,7 @@
"id": "dKzOfl5FSGPL"
},
"source": [
"## Train a tf.keras model for MNIST without clustering"
"## Train a keras model for MNIST without clustering"
]
},
{
Expand All @@ -146,8 +146,7 @@
"outputs": [],
"source": [
"# Load MNIST dataset\n",
"mnist = keras.datasets.mnist\n",
"(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n",
"(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()\n",
"\n",
"# Normalize the input image so that each pixel value is between 0 to 1.\n",
"train_images = train_images / 255.0\n",
Expand All @@ -165,7 +164,7 @@
"\n",
"# Train the digit classification model\n",
"model.compile(optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])\n",
"\n",
"model.fit(\n",
Expand Down Expand Up @@ -200,7 +199,7 @@
"\n",
"_, keras_file = tempfile.mkstemp('.h5')\n",
"print('Saving model to: ', keras_file)\n",
"tf.keras.models.save_model(model, keras_file, include_optimizer=False)"
"keras.models.save_model(model, keras_file, include_optimizer=False)"
]
},
{
Expand Down Expand Up @@ -261,10 +260,10 @@
"clustered_model = cluster_weights(model, **clustering_params)\n",
"\n",
"# Use smaller learning rate for fine-tuning clustered model\n",
"opt = tf.keras.optimizers.Adam(learning_rate=1e-5)\n",
"opt = keras.optimizers.Adam(learning_rate=1e-5)\n",
"\n",
"clustered_model.compile(\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" optimizer=opt,\n",
" metrics=['accuracy'])\n",
"\n",
Expand Down Expand Up @@ -362,7 +361,7 @@
"\n",
"_, clustered_keras_file = tempfile.mkstemp('.h5')\n",
"print('Saving clustered model to: ', clustered_keras_file)\n",
"tf.keras.models.save_model(final_model, clustered_keras_file, \n",
"keras.models.save_model(final_model, clustered_keras_file, \n",
" include_optimizer=False)"
]
},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ Please note that clustering will provide reduced benefits for convolution and de

Users can apply clustering with the following APIs:

* Model building: `tf.keras` with only Sequential and Functional models
* Model building: `keras` with only Sequential and Functional models
* TensorFlow versions: TF 1.x for versions 1.14+ and 2.x.
* `tf.compat.v1` with a TF 2.X package and `tf.compat.v2` with a TF 1.X
package are not supported.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@
"\n",
"In the tutorial, you will:\n",
"\n",
"1. Train a `tf.keras` model for the MNIST dataset from scratch.\n",
"1. Train a `keras` model for the MNIST dataset from scratch.\n",
"2. Fine-tune the model with clustering and see the accuracy.\n",
"3. Apply QAT and observe the loss of clusters.\n",
"4. Apply CQAT and observe that the clustering applied earlier has been preserved.\n",
Expand Down Expand Up @@ -119,6 +119,7 @@
"outputs": [],
"source": [
"import tensorflow as tf\n",
"import tf_keras as keras\n",
"\n",
"import numpy as np\n",
"import tempfile\n",
Expand All @@ -132,7 +133,7 @@
"id": "dKzOfl5FSGPL"
},
"source": [
"## Train a tf.keras model for MNIST without clustering"
"## Train a keras model for MNIST without clustering"
]
},
{
Expand All @@ -144,26 +145,26 @@
"outputs": [],
"source": [
"# Load MNIST dataset\n",
"mnist = tf.keras.datasets.mnist\n",
"mnist = keras.datasets.mnist\n",
"(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n",
"\n",
"# Normalize the input image so that each pixel value is between 0 to 1.\n",
"train_images = train_images / 255.0\n",
"test_images = test_images / 255.0\n",
"\n",
"model = tf.keras.Sequential([\n",
" tf.keras.layers.InputLayer(input_shape=(28, 28)),\n",
" tf.keras.layers.Reshape(target_shape=(28, 28, 1)),\n",
" tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3),\n",
"model = keras.Sequential([\n",
" keras.layers.InputLayer(input_shape=(28, 28)),\n",
" keras.layers.Reshape(target_shape=(28, 28, 1)),\n",
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3),\n",
" activation=tf.nn.relu),\n",
" tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(10)\n",
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
" keras.layers.Flatten(),\n",
" keras.layers.Dense(10)\n",
"])\n",
"\n",
"# Train the digit classification model\n",
"model.compile(optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])\n",
"\n",
"model.fit(\n",
Expand Down Expand Up @@ -198,7 +199,7 @@
"\n",
"_, keras_file = tempfile.mkstemp('.h5')\n",
"print('Saving model to: ', keras_file)\n",
"tf.keras.models.save_model(model, keras_file, include_optimizer=False)"
"keras.models.save_model(model, keras_file, include_optimizer=False)"
]
},
{
Expand Down Expand Up @@ -259,10 +260,10 @@
"clustered_model = cluster_weights(model, **clustering_params)\n",
"\n",
"# Use smaller learning rate for fine-tuning\n",
"opt = tf.keras.optimizers.Adam(learning_rate=1e-5)\n",
"opt = keras.optimizers.Adam(learning_rate=1e-5)\n",
"\n",
"clustered_model.compile(\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" optimizer=opt,\n",
" metrics=['accuracy'])\n",
"\n",
Expand Down Expand Up @@ -323,7 +324,7 @@
"def print_model_weight_clusters(model):\n",
"\n",
" for layer in model.layers:\n",
" if isinstance(layer, tf.keras.layers.Wrapper):\n",
" if isinstance(layer, keras.layers.Wrapper):\n",
" weights = layer.trainable_weights\n",
" else:\n",
" weights = layer.weights\n",
Expand Down Expand Up @@ -414,7 +415,7 @@
"qat_model = tfmot.quantization.keras.quantize_model(stripped_clustered_model)\n",
"\n",
"qat_model.compile(optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])\n",
"print('Train qat model:')\n",
"qat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)\n",
Expand All @@ -427,7 +428,7 @@
" tfmot.experimental.combine.Default8BitClusterPreserveQuantizeScheme())\n",
"\n",
"cqat_model.compile(optimizer='adam',\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])\n",
"print('Train cqat model:')\n",
"cqat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)"
Expand Down
Loading

0 comments on commit b0eea48

Please sign in to comment.