Skip to content

Commit

Permalink
OpenVINO metadata fix (ultralytics#7952)
Browse files Browse the repository at this point in the history
* Rename OpenVINO meta.yaml to model name

* Rename OpenVINO meta.yaml to model name

* Rename OpenVINO meta.yaml to model name

* fix
  • Loading branch information
glenn-jocher authored and tdhooghe committed Jun 10, 2022
1 parent 1686658 commit 7bfd391
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 14 deletions.
2 changes: 1 addition & 1 deletion export.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):

cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
subprocess.check_output(cmd.split()) # export
with open(Path(f) / 'meta.yaml', 'w') as g:
with open(Path(f) / file.with_suffix('.yaml'), 'w') as g:
yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml

LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
Expand Down
27 changes: 14 additions & 13 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,9 +323,12 @@ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False,
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults
w = attempt_download(w) # download if not local
fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults
if data: # assign class names (optional)
with open(data, errors='ignore') as f:
names = yaml.safe_load(f)['names']

if pt: # PyTorch
model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
Expand Down Expand Up @@ -383,7 +386,9 @@ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False,
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
executable_network = ie.compile_model(model=network, device_name="CPU")
output_layer = next(iter(executable_network.outputs))
self._load_metadata(w.parent / 'meta.yaml') # load metadata
meta = w.with_suffix('.yaml')
if meta.exists():
stride, names = self._load_metadata(meta) # load metadata
elif engine: # TensorRT
LOGGER.info(f'Loading {w} for TensorRT inference...')
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
Expand Down Expand Up @@ -449,11 +454,7 @@ def wrap_frozen_graph(gd, inputs, outputs):
output_details = interpreter.get_output_details() # outputs
elif tfjs:
raise Exception('ERROR: YOLOv5 TF.js inference is not supported')

self.__dict__.update(locals()) # assign all variables to self
if not hasattr(self, 'names') and data: # assign class names (optional)
with open(data, errors='ignore') as f:
names = yaml.safe_load(f)['names']

def forward(self, im, augment=False, visualize=False, val=False):
# YOLOv5 MultiBackend inference
Expand Down Expand Up @@ -527,13 +528,6 @@ def forward(self, im, augment=False, visualize=False, val=False):
y = torch.tensor(y, device=self.device)
return (y, []) if val else y

def _load_metadata(self, f='path/to/meta.yaml'):
# Load metadata from meta.yaml if it exists
if Path(f).is_file():
with open(f, errors='ignore') as f:
for k, v in yaml.safe_load(f).items():
setattr(self, k, v) # assign stride, names

def warmup(self, imgsz=(1, 3, 640, 640)):
# Warmup model by running inference once
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
Expand All @@ -556,6 +550,13 @@ def model_type(p='path/to/model.pt'):
tflite &= not edgetpu # *.tflite
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs

@staticmethod
def _load_metadata(f='path/to/meta.yaml'):
# Load metadata from meta.yaml if it exists
with open(f, errors='ignore') as f:
d = yaml.safe_load(f)
return d['stride'], d['names'] # assign stride, names


class AutoShape(nn.Module):
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
Expand Down

0 comments on commit 7bfd391

Please sign in to comment.