forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix: Pad/AveragePool fusion (microsoft#23190)
### Description Fusing Pad & AveragePool requires AveragePool to use `count_include_pad=1`. If the AveragePool already set some padding and `count_include_pad=0`, fusion can't happen. This PR adds a condition to perform fusion depending on those attributes. If fusion occurs, `count_include_pad` is always set to `1`. ### Motivation and Context Fix microsoft#22177 (mislabelled as a performance issue but there's an actual bug in the implementation) Bug introduced in microsoft#21556
- Loading branch information
1 parent
58c1a7d
commit b4e2789
Showing
6 changed files
with
217 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
68 changes: 68 additions & 0 deletions
68
onnxruntime/test/testdata/transform/fusion/fuse-pad-avgpool-gen.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import onnx | ||
|
||
HERE = Path(__file__).parent.resolve(strict=True) | ||
TEST = False | ||
|
||
if TEST: | ||
import onnxruntime | ||
|
||
|
||
def generate_fuse_pad_avgpool(): | ||
parameters = { | ||
"fuse-pad-avgpool": ( | ||
{}, | ||
[[1.333333, 2.333333, 1.777778], [3.0, 5.0, 3.666667], [2.666667, 4.333333, 3.111111]], | ||
), | ||
"fuse-pad-avgpool_with_pad": ( | ||
{"pads": [1, 1, 0, 0], "count_include_pad": 1}, | ||
[ | ||
[0.111111, 0.333333, 0.666667, 0.555556], | ||
[0.555556, 1.333333, 2.333333, 1.777778], | ||
[1.333333, 3.0, 5.0, 3.666667], | ||
[1.222222, 2.666667, 4.333333, 3.111111], | ||
], | ||
), | ||
"fuse-pad-avgpool_with_pad-nofuse": ( | ||
{"pads": [1, 1, 0, 0]}, | ||
[ | ||
[0.25, 0.5, 1.0, 0.833333], | ||
[0.833333, 1.333333, 2.333333, 1.777778], | ||
[2.0, 3.0, 5.0, 3.666667], | ||
[1.833333, 2.666667, 4.333333, 3.111111], | ||
], | ||
), | ||
} | ||
for name in parameters: | ||
model_path = HERE / f"{name}.onnx" | ||
input_ = onnx.helper.make_tensor_value_info("input", onnx.TensorProto.FLOAT, (1, 1, 3, 3)) | ||
pad = onnx.helper.make_node("Pad", ["input"], ["tp"], mode="constant", pads=[0, 0, 1, 1, 0, 0, 1, 1]) | ||
pool = onnx.helper.make_node("AveragePool", ["tp"], ["output"], kernel_shape=[3, 3], **parameters[name][0]) | ||
nodes = [pad, pool] | ||
output_shape = (1, 1, 3, 3) if name == "fuse-pad-avgpool" else (1, 1, 4, 4) | ||
output_ = onnx.helper.make_tensor_value_info("output", onnx.TensorProto.FLOAT, output_shape) | ||
graph = onnx.helper.make_graph(nodes, name, [input_], [output_]) | ||
model = onnx.helper.make_model(graph, opset_imports=[onnx.helper.make_opsetid("", 7)]) | ||
onnx.checker.check_model(model) | ||
onnx.save_model(model, model_path) | ||
if TEST: | ||
input_array = np.array([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]], dtype=np.float32) | ||
expected = np.array(parameters[name][1], dtype=np.float32) | ||
session_options = onnxruntime.SessionOptions() | ||
session_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL | ||
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL | ||
session = onnxruntime.InferenceSession(model_path, session_options) | ||
out = session.run(["output"], {"input": input_array}) | ||
actual = out[0].squeeze() | ||
np.testing.assert_allclose(actual, expected, rtol=1e-5, atol=0.0) | ||
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | ||
session = onnxruntime.InferenceSession(model_path, session_options) | ||
out = session.run(["output"], {"input": input_array}) | ||
actual = out[0].squeeze() | ||
np.testing.assert_allclose(actual, expected, rtol=1e-5, atol=0.0) | ||
|
||
|
||
if __name__ == "__main__": | ||
generate_fuse_pad_avgpool() |
Binary file not shown.
Binary file added
BIN
+247 Bytes
onnxruntime/test/testdata/transform/fusion/fuse-pad-avgpool_with_pad-nofuse.onnx
Binary file not shown.
Binary file added
BIN
+266 Bytes
onnxruntime/test/testdata/transform/fusion/fuse-pad-avgpool_with_pad.onnx
Binary file not shown.