- Applications of Machine Learning
- Why Machine Learning is the Future
- Important notes, tips & tricks for this course
- This PDF resource will help you a lot
- Updates on Udemy Reviews
- Installing Python and Anaconda (Mac, Linux & Windows)
- Update: Recommended Anaconda Version
- Installing R and R Studio (Mac, Linux & Windows)
- BONUS: Meet your instructors
- Welcome to Part 1 - Data Preprocessing
- Get the dataset
- Importing the Libraries
- Importing the Dataset
- For Python learners, summary of Object-oriented programming: classes & objects
- Missing Data
- Categorical Data
- WARNING - Update
- Splitting the Dataset into the Training set and Test set
- Feature Scaling
- And here is our Data Preprocessing Template! Quiz 1: Data Preprocessing
- How to get the dataset
- Dataset + Business Problem Description
- Simple Linear Regression Intuition - Step 1
- Simple Linear Regression Intuition - Step 2
- Simple Linear Regression in Python - Step 1
- Simple Linear Regression in Python - Step 2
- Simple Linear Regression in Python - Step 3
- Simple Linear Regression in Python - Step 4
- Simple Linear Regression in R - Step 1
- Simple Linear Regression in R - Step 2
- Simple Linear Regression in R - Step 3
- Simple Linear Regression in R - Step 4 Quiz 2: Simple Linear Regression
- How to get the dataset
- Dataset + Business Problem Description
- Multiple Linear Regression Intuition - Step 1
- Multiple Linear Regression Intuition - Step 2
- Multiple Linear Regression Intuition - Step 3
- Multiple Linear Regression Intuition - Step 4
- Prerequisites: What is the P-Value?
- Multiple Linear Regression Intuition - Step 5
- Multiple Linear Regression in Python - Step 1
- Multiple Linear Regression in Python - Step 2
- Multiple Linear Regression in Python - Step 3
- Multiple Linear Regression in Python - Backward Elimination - Preparation
- Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !
- Multiple Linear Regression in Python - Backward Elimination - Homework Solution
- Multiple Linear Regression in Python - Automatic Backward Elimination
- Multiple Linear Regression in R - Step 1
- Multiple Linear Regression in R - Step 2
- Multiple Linear Regression in R - Step 3
- Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
- Multiple Linear Regression in R - Backward Elimination - Homework Solution
- Multiple Linear Regression in R - Automatic Backward Elimination Quiz 3: Multiple Linear Regression
- Polynomial Regression Intuition
- How to get the dataset
- Polynomial Regression in Python - Step 1
- Polynomial Regression in Python - Step 2
- Polynomial Regression in Python - Step 3
- Polynomial Regression in Python - Step 4
- Python Regression Template
- Polynomial Regression in R - Step 1
- Polynomial Regression in R - Step 2
- Polynomial Regression in R - Step 3
- Polynomial Regression in R - Step 4
- R Regression Template
- How to get the dataset
- SVR Intuition
- SVR in Python
- SVR in R
- Decision Tree Regression Intuition
- How to get the dataset
- Decision Tree Regression in Python
- Decision Tree Regression in R
- Random Forest Regression Intuition
- How to get the dataset
- Random Forest Regression in Python
- Random Forest Regression in R
- R-Squared Intuition
- Adjusted R-Squared Intuition
- Evaluating Regression Models Performance - Homework's Final Part
- Interpreting Linear Regression Coefficients
- Conclusion of Part 2 - Regression
- Logistic Regression Intuition
- How to get the dataset
- Logistic Regression in Python - Step 1
- Logistic Regression in Python - Step 2
- Logistic Regression in Python - Step 3
- Logistic Regression in Python - Step 4
- Logistic Regression in Python - Step 5
- Python Classification Template
- Logistic Regression in R - Step 1
- Logistic Regression in R - Step 2
- Logistic Regression in R - Step 3
- Logistic Regression in R - Step 4
- Logistic Regression in R - Step 5
- R Classification Template Quiz 4: Logistic Regression
- K-Nearest Neighbor Intuition
- How to get the dataset
- K-NN in Python
- K-NN in R Quiz 5: K-Nearest Neighbor
- SVM Intuition
- How to get the dataset
- SVM in Python
- SVM in R
- SVM Intuition
- How to get the dataset
- SVM in Python
- SVM in R
- Bayes Theorem
- Naive Bayes Intuition
- Naive Bayes Intuition (Challenge Reveal)
- Naive Bayes Intuition (Extras)
- How to get the dataset
- Naive Bayes in Python
- Naive Bayes in R
- Decision Tree Classification Intuition
- How to get the dataset
- Decision Tree Classification in Python
- Decision Tree Classification in R
- Random Forest Classification Intuition
- How to get the dataset
- Random Forest Classification in Python
- Random Forest Classification in R
- False Positives & False Negatives
- Confusion Matrix
- Accuracy Paradox
- CAP Curve
- CAP Curve Analysis
- Conclusion of Part 3 - Classification
- K-Means Clustering Intuition
- K-Means Random Initialization Trap
- K-Means Selecting The Number Of Clusters
- How to get the dataset
- K-Means Clustering in Python
- K-Means Clustering in R Quiz 6: K-Means Clustering
- Hierarchical Clustering Intuition
- Hierarchical Clustering How Dendrograms Work
- Hierarchical Clustering Using Dendrograms
- How to get the dataset
- HC in Python - Step 1
- HC in Python - Step 2
- HC in Python - Step 3
- HC in Python - Step 4
- HC in Python - Step 5
- HC in R - Step 1
- HC in R - Step 2
- HC in R - Step 3
- HC in R - Step 4
- HC in R - Step 5 Quiz 7: Hierarchical Clustering
- Conclusion of Part 4 - Clustering
- Apriori Intuition
- How to get the dataset
- Apriori in R - Step 1
- Apriori in R - Step 2
- Apriori in R - Step 3
- Apriori in Python - Step 1
- Apriori in Python - Step 2
- Apriori in Python - Step 3
- Eclat Intuition
- How to get the dataset
- Eclat in R
- The Multi-Armed Bandit Problem
- Upper Confidence Bound (UCB) Intuition
- How to get the dataset
- Upper Confidence Bound in Python - Step 1
- Upper Confidence Bound in Python - Step 2
- Upper Confidence Bound in Python - Step 3
- Upper Confidence Bound in Python - Step 4
- Upper Confidence Bound in R - Step 1
- Upper Confidence Bound in R - Step 2
- Upper Confidence Bound in R - Step 3
- Upper Confidence Bound in R - Step 4
- Thompson Sampling Intuition
- Algorithm Comparison: UCB vs Thompson Sampling
- How to get the dataset
- Thompson Sampling in Python - Step 1
- Thompson Sampling in Python - Step 2
- Thompson Sampling in R - Step 1
- Thompson Sampling in R - Step 2